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Abstract: The present contribution reports on preliminary results of enhancing the approximation space of 

the Finite Element Method by means of pre-generated displacement fluctuation fields. The formulation builds 

on the Wang tile based compression of investigated microstructures and expands the application potential of 

the tiling compression into numerical methods. Enrichment functions are precomputed as responses of the 

compressed system to a set of load cases and synthesized analogously to the synthesis of the microstructure. 

The performance is illustrated with a two-dimensional linear diffusion problem. 
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1. Introduction 

The issue of incorporating knowledge of a material microstructure into coarser scale analyses remains a 

vivid topic in Computational Mechanics. In the case of separation of scales, i.e., when the characteristic 

microstructural length is by orders of magnitude smaller than the size of a macro-scale task, the material 

can be treated as homogeneous from the macro-scale viewpoint. The microstructural characteristics are 

then propagated into upper scales by means of homogenization when either parameters of a given 

constitutive model are identified from numerical tests performed on a Representative Volume Element or 

the macroscopic constitutive model is obtained in an incremental form arising from the solution of a 

boundary value problem for each integration point of the macroscopic discretization, see (Geers et al., 2010) 

and reference therein.  

In this work, we aim at tasks in which the separation of scales is not valid. In such a case, the standard 

Finite Element Method requires detailed resolution of the underlying microstructural geometry. As a result, 

the complexity of the macro-scale model significantly increases. The second disadvantage of such an 

approach stems from its dependence on a specific microstructure realization, which is stochastic in the 

majority of real-world materials. Therefore, Monte Carlo-like simulations are necessary to assess the model 

response under different realizations of the microstructure in an attempt to account for unfavorable 

compositions.   

We have recently demonstrated, e.g., in (Novák et al., 2012; Doškář et al., 2014), that the representation 

based on Wang tiles is particularly appealing when multiple stochastic realizations of a microstructure 

should be efficiently generated, featuring spatial statistics similar to that of the reference sample. In the 

present contribution, we exploit the compressed form of a microstructure in the framework of eXtended 

Finite Element Method (XFEM), which allows to circumvent the requirement of the detailed resolution by 

enhancing the approximation space with specifically designed enrichment functions. In particular, we 

construct the enrichment functions as responses of the compressed system to prescribed loadings while 

preserving continuity of the functions across the corresponding edges of individual tiles. The global 

enrichment functions for a macro-scale analysis are then assembled in the same way the microstructure 
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realization is generated. We illustrate the proposed methodology with a preliminary results for the two-

dimensional diffusion problem. 

2. Wang tiles 

Originally developed as a decidability procedure in Mathematical Logic (Wang, 1961), Wang tiles are 

currently a well-established tool for efficient synthesis of naturally looking textures in Computer Graphics 

(Cohen et al., 2003). The direct correspondence between goals of texture synthesis and representation of 

heterogeneous materials motivated our current effort and allowed us to introduce the concept of Wang tiles 

as a promising generalization of the Statistically Equivalent Periodic Unit Cell (SEPUC) approach to 

modelling of heterogeneous materials (Novák et al., 2012). We replace the single cell with a set of piecewise 

compatible domains—Wang Tiles—and employ the formalism of the original tiling concept in order to 

formulate the compatibility constraint during the assembly of tiles into a realization of the compressed 

microstructure, see Fig. 1. Microstructural information can be compressed into the tile set by making use 

of the methods developed for SEPUC generation, modified in order to account for the generalized periodic 

boundary conditions arising in the tiling concept (Novák et al., 2012). In order to alleviate computation cost 

of the optimization approach, we have proposed an alternative method, see (Doškář et al., 2014), that was 

inspired by the approach of Computer Graphics (Cohen et al., 2013), and employs a provided sample of the 

microstructure. The major merit of Wang tiles is their ability to reconstruct instantly stochastic realizations 

of arbitrary size with suppressed artificial periodicity inherent to PUC. Therefore, the concept is appealing 

for a wide range of tasks in which multiple statistically coherent realizations of the investigated 

microstructure are needed, for instance in numerical homogenization (Doškář & Novák, 2016). With the 

present contribution, we expand its application potential into enrichment based numerical methods. 

3. Methodology 

The standard formulation of Finite Element Method (FEM) builds on the weak form of the governing 

equations which in general reads as 

 𝐹𝑖𝑛𝑑 𝑢 ∈ 𝑉: 𝑎(𝑢, 𝑣) = 𝑏(𝑣), ∀𝑣 ∈ 𝑉0. (1) 

The quality of the solution directly follows from the finite-dimensional approximation space 𝑉ℎ ⊂ 𝑉, 

which in the case of FEM is constructed from element-wise polynomials. As mentioned above, this 

construction requires a mesh refinement in order to properly account for microstructural details. The 

eXtended Finite Element Method (XFEM), also called the Generalized Finite Element Method1, 

supplements the approximation space with a priori knowledge of a (local) character of the solution. As a 

result, significantly smaller number of degrees of freedom (DOFs) is necessary.  

In mechanics of solids and modelling of materials in particular, XFEM is usually used to capture crack 

propagation, shear bands, or complex microstructural geometries, see (Belytschko et al., 2009; 

Fries & Belytschko, 2010) for a comprehensive review. Usually, analytical enrichment functions derived 

for a single microstructural feature are used to enhance the approximation space, e.g., (Strouboulis et al., 

2001). However, numerical “handbook” functions have been already introduced by Strouboulis et al. (2003) 

for the case of multiple closely packed inclusions. A similar approach has been recently proposed by Plews 

and Duarte (2014). The both approaches rely on computing Boundary Value Problems on subdomains of 

                                                 

1 Description of etymology of the names can be found in (Belytschko et al., 2009). 

Fig. 1: Illustration of a reconstructed microstructure with the highlighted Wang tile codes defining the 

compatibility constraint during an assembly (left) and a set of Wang tiles (right). 
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the original task and extracting the dominant response of the microstructure. In this perspective, our 

approach can be understood as their off-line counterpart. The original idea of employing the Wang tiles for 

a synthesis of enrichment functions dates back to (Novák et al., 2013), where the constraint of stress 

compatibility among congruent tile edges was incorporated into the objective function of the optimization 

algorithm used to design tile morphology. However, this condition led to a nearly periodic arrangement of 

particles. In this work, we generate enrichment functions separately after a microstructure is compressed in 

the tile set. Each tile is discretized with an FE mesh that is compatible across the congruent edges. Inspired 

by the first-order numerical homogenization, we consider the decomposition of the displacement field into 

the fluctuation part and the part corresponding to a prescribed macroscopic gradient tensor. We assemble a 

stiffness matrix for each tile, condensate out inner fluctuation DOFs, and localize the remaining unknowns 

according to the edge codes into the stiffness matrix for the whole tile set. The resulting system is then 

solved for a prescribed unit macroscopic gradient and the edge fluctuation unknowns are obtained. The 

fluctuation fields inside each tile are then reconstructed from the edge DOFs. This treatment ensures 

continuity of the enrichment fields across the corresponding tile edges.  

With the displacement fluctuation fields pre-computed for each tile, we can define 𝑛𝑗 enrichment 

functions for every microstructure reconstructed with the Wang tile set as an assembly of the fluctuation 

fields derived from 𝑛𝑗 loading cases. The approximate solution of Eq. (1) then takes the form 

 𝑢ℎ(𝑥) =  ∑ 𝑁𝑖(𝑥)𝑢𝑖
𝑛𝑖
𝑖=1 +  ∑ ∑ 𝑁𝑖(𝑥) (𝜓𝑗(𝑥) − 𝜓𝑗(𝑥𝑖)) 𝑢𝑖

𝑗𝑛𝑗

𝑗=1

𝑛𝑖
𝑖=1 , (2) 

where 𝑁𝑖(𝑥) and 𝑢𝑖 are the standard polynomial shape functions and DOFs while 𝜓𝑗(𝑥) denotes an 

enrichment function (in our case global) with the corresponding DOF 𝑢𝑖
𝑗
. The enrichment function is 

(i) shifted by 𝜓𝑗(𝑥𝑖) and (ii) multiplied by the shape functions 𝑁𝑖(𝑥) in order to (i) restore the Kronecker 

delta property 𝑢ℎ(𝑥𝑖) = 𝑢𝑖 and (ii) preserve the banded structure of the resulting algebraic system. 

 

  
(a) (b) 

Fig. 2: The discretization and the microstructure of the considered task (a) and (b) contours of the 

discrepancy between the XFEM solution (24 DOFs) and the fully resolved FEM (nearly 20k DOFs). 

4. Numerical example 

As an illustrative example, we considered the Laplace equation for a simple rectangular domain with a 

microstructure generated from a tiling composed of 4 × 2 tiles. The loading of the domain was induced 

through Dirichlet boundary conditions prescribed with a macroscopic gradient in 𝑥 direction (horizontal) 

of magnitude 0.02. At the tile level, the microstructure was discretized using a regular grid of quadrilateral 

linear elements corresponding to pixel representation of the tiles, the resolution of a tile was 50 × 50 px. 

Two global enrichment functions related to a unit gradient in each direction were provided to XFEM. At 

the macro-scale level, linear triangular elements were used. The discretization of the macro-scale task is 

depicted in red in Fig. 2a along with the considered microstructure, dimensions of the domain are given in 

px. The integration of the weak form (1) was performed employing the tile discretization and the 9 point 

Gauss quadrature rule. The obtained XFEM solution (24 DOFs) was compared to the reference solution of 

the fully resolved microstructure (nearly 20k DOFs). The absolute discrepancy between the two solutions 

is plotted in Fig. 2b. Note that the errors concentrate mainly along the tile edges and near the boundary of 

the domain which is due to the pre-computed nature of the enrichment functions. The boundary related 

errors can be compensated for by a finer discretization near the domain boundary whilst the discrepancies 

related to the tile edges would be reduced by taking more enrichment functions into account.   
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5. Conclusions 

With a simple example, we have demonstrated that the proposed methodology can provide comparable 

results to the fully resolved FEM with a significantly smaller number of DOFs. The geometry of the macro-

scale task is not restricted to rectangular shapes and can be arbitrary due to the multiplication of the 

enrichments functions by the standard shape functions in Eq. (2). On the other hand, our approach shares 

the main sore common to XFEM, namely the integration of the discretized weak form, which can in turn 

dissipate the computation savings arising from less DOFs. Moreover, the integration has to be carried out 

carefully in the regions where the macro-scale elements intersect the tile-level elements. Strouboulis et al. 

(2003) also showed that the XFEM solution is particularly sensitive to the accuracy of the provided 

enrichment, which is only approximate in our approach. Thus, our particular attention will be devoted to 

the question of an appropriate formulation of the enrichment functions and efficient integration. The method 

holds promise also for a non-linear regime. The assembled enrichment functions will address only the linear 

mode and will allow for identification of regions with onset of the non-linearity. Additional enrichment 

functions reflecting the non-linear mode will be supplemented on-the-fly only locally for the identified 

regions, similarly to the proposed strategy by Plews and Duarte (2014).  
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