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Abstract: The paper describes computation of aerodynamic damping and natural frequencies of aeroelastic 
systems. The damping is a critical parameter for the stability analysis of aeroelastic systems. Structural 
damping of the system is important for very low fluid flow velocities, however by increasing the flow velocity, 
the aerodynamic damping dominates in the instability search. The damping can be evaluated in time or in 
frequency domain. The presented computation of aerodynamic damping consists of two analytical and one 
numerical approach. The analytical approaches are represented by the well-known pk method and the 
unsteady panel method. The pk method is based on Theodorsen unsteady aerodynamics and on the 
computation of complex eigenvalues of the system as functions of the flow velocity. The unsteady panel 
method enables the computation of the interaction between aeroelastic system and fluid flow. The 
aerodynamic damping is evaluated in time domain from the system response to given initial conditions. The 
numerical approach is based on the finite volume method (FVM) modelling the complete fluid-structure 
interaction (FSI) coupled problem. The aerodynamic damping is also computed from the system response to 
a given initial condition. The results of the mentioned methods are compared for the profile NACA 0012 with 
two degrees of freedom (2-DOF) for plunge and pitch motion around an elastic axis. 

Keywords:  aeroelastic instability, aerodynamic damping and eigenfrequency analysis, fluid structure 
interaction 

1. Introduction 

Aeroelastic systems are represented by wide range of systems where vibrating structure interacts with 
fluid. The fluid flow affects the structure and the structure affects the flow field. It yields the coupled 
problem where governing equations of both structure and fluid have to be solved together. One of the 
basic important problems is the computation of stability boundaries of the coupled system. These 
boundaries are usually calculated for critical fluid flow velocities. If a certain value is achieved, the 
system becomes unstable. Two basic types of instability are usually defined – divergence and flutter. 
Divergence is defined as instability with negative damping and zero frequency of the motion of the 
structure. Flutter is defined as instability with negative damping and positive frequency of the motion. 
Calculation of the damping as a function of the fluid flow velocity represents a classical procedure for the 
stability investigation. For zero and very low velocities the damping of the structure is usually positive 
and consists mainly of the structural damping. With increasing the flow velocity the aerodynamic 
damping becomes more significant. At certain velocity the aerodynamic damping starts to decrease. 
When the total damping crosses the zero value, the instability occurs (Dowell et al., 1995). 

2. Methods  

Three different computational methods are introduced. They differ in the form of FSI calculation. The pk 
method only solves an eigenvalue problem of the FSI system, see e.g. Dowell et al. (1995). The unsteady 
panel method (Basu & Hancock, 1978) and the FVM (Rodden at al., 1979) enable the FSI solution in 
time domain. These methods are based on the evaluation of aerodynamic damping and natural 
frequencies. In all cases considered here, we suppose that the fluid flow is inviscid and incompressible in 
a 2D computational domain. 
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2.1. Pk method 

The pk method represents a technique for computation of aeroelastic stability solution where p indicates 
the eigenvalue and k the reduced frequency. This method is based on the computation of complex 
eigenvalues of the equation of motion  
 𝑀𝑀�̈�𝑥(𝑡𝑡) + 𝐵𝐵�̇�𝑥(𝑡𝑡) + 𝐾𝐾𝑥𝑥(𝑡𝑡) = 𝑄𝑄(𝑘𝑘)𝑥𝑥(𝑡𝑡),  (1) 

in which  for the considered 2-DOF system  𝑀𝑀,𝐵𝐵,𝐾𝐾 and 𝑄𝑄 stand for/are   mass, damping, stiffness and 
aerodynamic forces matrices of dimension 2x2 respectively. The matrix of aerodynamic forces is derived 
for inviscid and incompressible fluid using the Theodorsen unsteady aerodynamics and it is a function of 
reduced frequency 𝑘𝑘 = 𝜔𝜔𝜔𝜔

𝑈𝑈∞
 where 𝜔𝜔 is the natural frequency, 𝑏𝑏 is the reference dimension and 𝑈𝑈∞ is the 

fluid flow velocity. Aerodynamic matrix 𝑄𝑄(𝑘𝑘) for aeroelastic system with 2 degrees of freedom (DOF) 
can be found in classic aeroelastic literature, see e.g. Dowell et al., (1995). The eigenvalues are computed 
in the form of complex conjugate numbers 

 𝑝𝑝𝑗𝑗1,2 = −𝑏𝑏𝑟𝑟𝑗𝑗Ω0𝑗𝑗 ± 𝑖𝑖Ω0𝑗𝑗�1 − 𝑏𝑏𝑟𝑟𝑗𝑗2  .  (2) 

The solution using the pk method is iterative and the convergence criterion is the difference of 
frequency 𝜔𝜔 and imaginary part of eigenvalue �Ω0�1 − 𝑏𝑏𝑟𝑟2 − 𝜔𝜔� < 𝜀𝜀. Once the convergent solution is 
computed, the damping ratio is evaluated as 

 𝑏𝑏𝑟𝑟𝑗𝑗 = −𝑅𝑅𝑅𝑅�𝑝𝑝𝑗𝑗�
�𝑝𝑝𝑗𝑗�

 , (3) 

and the eigenfrequency is evaluated as the positive imaginary part of (2). Results of the pk method are 
valid in accordance with its derivation only for zero fluid flow velocity, or for the velocity, where the 
flutter occurs. Nevertheless, the benefits of pk method are reflected in its implementation into commercial 
software NASTRAN for aeroelastic calculations (Rodden at al., 1979). 

2.2. Unsteady panel method 

Unsteady panel method was derived for 2D inviscid and incompressible fluid flow as a tool for fluid 
structure interaction calculation. The calculation of the flow field is based on the solution of the Laplace 
equation for the total velocity potential Δ𝜙𝜙 = 0. The solution for the total velocity potential is considered 
as a sum of free stream, source and sink, and vortex components. The geometry of the structure has to be 
defined and the computational domain is considered to be infinite. Once the complete flow field is 
computed, the aerodynamic forces acting on the structure can be evaluated. The motion of the structure is 
described by the equation of motion 

 𝑀𝑀�̈�𝑥(𝑡𝑡) + 𝐵𝐵�̇�𝑥(𝑡𝑡) + 𝐾𝐾𝑥𝑥(𝑡𝑡) = 𝑉𝑉(𝑡𝑡), (4) 

where 𝑉𝑉(𝑡𝑡) is the vector of aerodynamic forces. The structure motion and the fluid flow have to be solved 
for every time step. The response of the structure can be computed for arbitrary initial displacement of the 
structure at defined flow field velocity. The damping ratio and natural frequencies can be evaluated based 
on the structure response in time domain, see e.g. Chládek et al., (2016).  

2.3. Finite volume method 

The inviscid incompressible 2D fluid flow field is described by the Euler equation in the conservative 
form 

 D.𝑊𝑊𝑡𝑡 + 𝐹𝐹𝑥𝑥 + 𝐺𝐺𝑦𝑦 = 0, (5) 

where 𝑊𝑊 = {𝑝𝑝,𝑢𝑢, 𝑣𝑣}𝑇𝑇 is the vector of conservative variables, 𝐹𝐹 = {𝑢𝑢,𝑢𝑢2 + 𝑝𝑝,𝑢𝑢𝑣𝑣}𝑇𝑇 ,𝐺𝐺 =  {𝑣𝑣,𝑢𝑢𝑣𝑣, 𝑣𝑣2 + 𝑝𝑝}𝑇𝑇 
represent inviscid physical fluxes and D = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(0,1,1) represents diagonal matrix. The solution in the 
time domain was calculated by the finite volume method in discrete points of the computational domain 
where the proper initial and boundary conditions were defined. Computational domain is shown with the 
boundary conditions in the left-hand side of Fig. 1. On Γ𝑖𝑖, which represents inlet of the channel, there was 
the Dirichlet boundary condition prescribed in the form [𝑢𝑢, 𝑣𝑣] = (𝑈𝑈∞, 0). On Γ𝑜𝑜, which represents outlet 
of the channel, a value of pressure 𝑝𝑝 was prescribed. Γ𝑤𝑤 denotes boundary condition of type wall and it 
was prescribed on the structure and on the walls of the channel. It defined the slip boundary condition in 
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the case of the inviscid fluid. For given initial conditions of the structure position was the coupled FSI 
problem solved. In every time step the complete flow field was calculated, the aerodynamic forces were 
evaluated and the equation of motion (4) was solved. Based on the structure response in time domain, the 
damping ratios and the natural frequencies were evaluated similarly as for the unsteady panel method. 

 
Fig. 1: Computational domain for FVM (left) and example of velocity flow field at U∞=15 m.s-1(right). 

3. Results and discussion 

Algorithms for the pk method and the unsteady panel method were programmed in Matlab. The FVM 
solution was implemented in the commercial software Ansys/Fluent and the Runge-Kutta method was 
used for numerical solution of the equation of motion (4) as in the case of the panel method. Structural 
properties of the profile NACA 0012 were taken from Sváček et al. (2012).Only the static moment was 
multiplied by -1 to be positive. The profile response was computed for the far flow field velocities 
𝑈𝑈∞ = {10, 15, 20, 26, 30} 𝑚𝑚. 𝑠𝑠−1. The initial position of the profile was set to ℎ(0) = 2. 10−3𝑚𝑚 for the 
vertical translation and 𝛼𝛼(0) = 2.86° for the rotation. The example of the FVM solution is shown in the 
right-hand side of Fig. 1 in the form of velocity flow field. The resulting natural frequencies are shown as 
a function of the flow velocity in Fig. 2 and the evaluated damping ratios are presented in Fig. 3. 

 
Fig. 2: Comparison of computed natural frequencies as a function of flow velocity.  

Considering the data in Fig. 2 it can be concluded that for the flow velocities lower than 𝑈𝑈∞ =
26 𝑚𝑚. 𝑠𝑠−1 here is a good agreement of all three methods, however, for the higher velocities two natural 
frequencies were computed only by the pk method, while by the panel and FVM methods we computed 
only the higher natural frequency. Nevertheless, these frequencies are close to the results obtained by the 
pk method. The results for the damping ratio are not clear. There are some flow field velocities where the 
results are in good agreement but it is difficult to make some general conclusions. The results of the 
stability analysis are summarized in Tab. 1. The lowest stability limit was computed by the panel method 
when the flutter occurs at far field velocity 𝑈𝑈∞ = 26 𝑚𝑚. 𝑠𝑠−1. Using FVM method the flutter velocity was 
computed at 𝑈𝑈∞ = 28 𝑚𝑚. 𝑠𝑠−1. Finally, the pk method estimated the flutter instability at 𝑈𝑈∞ = 30 𝑚𝑚. 𝑠𝑠−1.  
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Tab. 1: Aeroelastic stability analysis based on three different computational methods. 

Velocity Stable or type on instability 

U [m.s-1] PK method Panel method FVM method 

5 stable stable stable 

10 stable stable stable 

15 stable stable stable 

20 stable stable stable 

26 stable FLUTTER stable 

28 stable FLUTTER FLUTTER 

30 FLUTTER FLUTTER FLUTTER 

 
Fig. 3: Comparison of evaluated damping ratios as functions of the airflow velocity. 

4. Conclusions 

Three different methods for the airfoil stability calculation were compared. The results show a good 
agreement in case of natural frequency evaluation. Comparison of the damping ratios appeared more 
complicated and only for some values of the fluid flow velocity a good agreement was obtained. A more 
detailed study is needed for clarification of such discrepancies. 
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