
 22nd International Conference  
ENGINEERING MECHANICS 2016 

Svratka, Czech Republic, 9 – 12 May 2016 

NUMERICAL MODELING OF MAGNETOSTRICTIVE MATERIALS 

I. Kholmetska*, J. Chleboun**, P. Krejčí*** 

An operator-differential model for magnetostrictive energy harvesting proposed in the literature is used to 
calculate the amount of harvested energy under some uncertainty in the Preisach density function. The 
uncertainty is modeled through a fuzzy set approach. In galfenol, an alloy of gallium and iron, however, the 
hysteresis phenomenon is present only weakly. This allows to propose a simpler, but computationally faster 
model without hysteresis. The new, simpler model has been identified from the measured magnetic and 
magnetostrictive cycles. The amount of harvested energy is of the same order in both models.  Again, an 
uncertainty in the identified model can be considered and its impact on the amount of the harvested energy 
calculated. 
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1. Introduction 

The modern approach to the mathematical modeling of the materials with memory is based on the use of 
hysteresis operators. Hysteresis is a time-based dependence of a system's output on present and past 
inputs. Materials with memory are the subject of research and modeling in various fields, including 
nonlinear elasticity, moisture transport, magnetism, piezoelectricity, etc. Magnetostrictive materials are 
used in vibration sensors and energy harvesting devices, for instance. Energy harvesting is a technique for 
recovering small amounts of any kind of ambient (and otherwise wasted) energy (such as light, vibrations, 
heat, etc.). In our work, special attention is paid to uncertainty quantification and propagation in the 
models. 

2. Energy harvesting device and its mathematical model 
A magnetostrictive galfenol core of a coil with 𝑁𝑁 loops is exposed to a known periodic uniform stress 
𝜎𝜎(𝑡𝑡) and produces variations in a background (bias) magnetic field ℎ0. As a consequence, an electric 
current is induced in the loops of wire and flows through a resistor (Davino et al., 2014). The 
phenomenon is described by the Faraday law 

𝑑𝑑
𝑑𝑑𝑑𝑑

 �µ0𝑓𝑓 (𝑡𝑡)𝑢𝑢(𝑡𝑡) +  𝒫𝒫[𝑢𝑢, 𝜆𝜆−1](𝑡𝑡)� + 𝛼𝛼�ℎ(𝑡𝑡) − ℎ0(𝑡𝑡)� = 0,                                  (1) 

where the unknown function 𝑢𝑢(𝑡𝑡) = ℎ(𝑡𝑡)/𝑓𝑓(𝑡𝑡) is to be found for the time interval 𝑡𝑡𝑡𝑡[0,𝑇𝑇] and an initial 
value 𝑢𝑢(0) = 𝑢𝑢0𝑡𝑡ℝ; ℎ is an unknown total magnetic field in the core; µ0 is the vacuum permeability;              
𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝜎𝜎(𝑡𝑡)) > 0  is a known function that takes part in the magnetostrictive response to pre-stress; 
𝒫𝒫[∙,∙] is the Preisach hysteresis operator; 𝜆𝜆−1 is an initial memory state; 𝛼𝛼 is a known model parameter 
dependent on the coil properties. 

The model is free of spatial wave propagation, which may play a role for high frequency loading in 
the range of several tens or hundreds of kilohertz. Energy harvesting is a low frequency application. In 
addition, realistic spatially distributed data are not easy to get. 
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The Preisach model is a multiyield model. It is particularly suitable for modeling energy harvesting 
due to easy parameter identification and an explicit formula for the instantaneous energy dissipation rate.  

The Preisach operator 𝒫𝒫 allows for taking hysteresis phenomena into account 

𝒫𝒫[𝑢𝑢, 𝜆𝜆−1](𝑡𝑡) = ∫ ∫ 𝜓𝜓(𝑟𝑟, 𝑣𝑣)d𝑣𝑣d𝑟𝑟𝔭𝔭𝑟𝑟[𝑢𝑢,𝜆𝜆−1](𝑑𝑑)
0

∞
0                                      (2) 

and is determined by the Preisach density function 𝜓𝜓 as well as the play operator 𝔭𝔭𝑟𝑟: (𝑢𝑢, 𝜆𝜆−1) ⟼ 𝜉𝜉𝑟𝑟 , 
where 𝜉𝜉𝑟𝑟 solves a differential variational inequality defined by 𝑢𝑢0 , 𝑢𝑢 , and 𝜆𝜆−1 . In (2), 𝑡𝑡  is fixed and 
𝔭𝔭𝑟𝑟[𝑢𝑢, 𝜆𝜆−1](𝑡𝑡) is a function of 𝑟𝑟. 

It is proved in (Davino et al., 2014) that a unique solution 𝑢𝑢𝑡𝑡𝑊𝑊1,2(0,𝑇𝑇),𝑢𝑢(0) = 𝑢𝑢0 , exists and 
depends continuously on initial data. If ℎ0(𝑡𝑡) and 𝑓𝑓(𝑡𝑡) are 𝑇𝑇𝑝𝑝-periodic functions, then 𝑢𝑢 is 𝑇𝑇𝑝𝑝-periodic, 
too. The proof is based on an approach that can serve as a numerical method for solving the problem (1). 

A Preisach density function based on galfenol measurements is identified in Davino et al. (2014), see 
Fig. 5 (left). 

Let us recall (1) and 𝑢𝑢(𝑡𝑡) = ℎ(𝑡𝑡)/𝑓𝑓(𝑡𝑡). The energy E harvested during a time period 𝑇𝑇𝑝𝑝 is equal to  

𝐸𝐸(ℎ0,𝛼𝛼, 𝛾𝛾) = 𝛾𝛾 ∫ (ℎ0 − ℎ(𝑡𝑡))2𝑇𝑇�+𝑇𝑇𝑝𝑝
𝑇𝑇� d𝑡𝑡,                                             (4) 

where γ is a known model parameter, see (Davino D. et al. (2014)).  

Numerical tests indicate that the calculated harvested energy converges with the rate 𝐶𝐶𝐶𝐶, where 𝐶𝐶  is 
the time-step size used in solving (1) and 𝐶𝐶 >  0 is a constant of order 0 if the bias field ℎ0 is constant, 
but of order 2 if ℎ0 is nonconstant, i.e., periodic. 

3. Fuzzy input data 

The function 𝜓𝜓M  is approximated by a continuous piecewise bilinear function 𝜓𝜓Abilin  defined on a 
rectangular mesh. Due to the symmetry of 𝜓𝜓M, only one half of the graph of 𝜓𝜓Abilin is depicted in Fig. 1. 
The value of 𝜓𝜓Abilin is uncertain at some mesh nodes and fixed at the others. 

The uncertainty is modeled by 16 fuzzy numbers with a triangular membership function defined on 
[0.9𝜓𝜓M(𝑟𝑟𝑖𝑖, 𝑣𝑣𝑖𝑖), 1.1𝜓𝜓M(𝑟𝑟𝑖𝑖, 𝑣𝑣𝑖𝑖)], where (𝑟𝑟𝑖𝑖, 𝑣𝑣𝑖𝑖) are the coordinates of the nodes that bear the uncertainty. A  
fuzzy saturation condition is considered 

∫ ∫ 𝜓𝜓Abilin
𝑣𝑣∞
0

𝑟𝑟∞
0 (𝑟𝑟, 𝑣𝑣)d𝑟𝑟d𝑣𝑣 = 𝑐𝑐fuzzy,                                             (5) 

where 𝑟𝑟∞  and 𝑣𝑣∞  are sufficiently large and 𝑐𝑐fuzzy  is a fuzzy triangular number. The approximate 
membership function of the fuzzy harvested energy can be constructed on the basis of the worst and best 
case scenario problems solved on α-cuts (α-level optimization), see Chapter 5.2.2 (Möller & Beer, 2010). 

 
Fig. 1: Left: The graph of 𝜓𝜓𝐴𝐴𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏 with 16 uncertain nodal values. Right: The calculated membership 

function of the harvested energy.  
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4. Identification of a magnetostrictive material model without hysteresis 

In galfenol, an alloy of gallium and iron, the effect of the hysteresis is rather small, and this leads us to 
considering a simplified model where hysteresis is neglected. In this model and for a fixed stress σ, the 
magnetization 𝑚𝑚𝜎𝜎 and the strain ε𝜎𝜎 are assumed to depend on a function 𝑔𝑔 and a value 𝑓𝑓(𝜎𝜎) and to take 
the form  

𝑚𝑚𝜎𝜎(ℎ) = 𝑔𝑔 � ℎ
𝑓𝑓(𝜎𝜎)�,        ε𝜎𝜎(ℎ) = −𝑓𝑓′(𝜎𝜎)𝐺𝐺� ℎ

𝑓𝑓(𝜎𝜎)�                                         (6) 

where ℎ 𝑡𝑡 ℝ and 𝐺𝐺(𝑢𝑢) = ∫ 𝑣𝑣𝑔𝑔′(𝑣𝑣)d𝑣𝑣𝑢𝑢
0 , the prime stands for the derivative with respect to the indicated 

variable. In (6), ε𝜎𝜎  is the inelastic part of the total strain, that is,  ε𝜎𝜎 = 𝜀𝜀total −
𝜎𝜎
𝐸𝐸
 , where 𝐸𝐸 is the Young 

modulus. 

Our goal is to identify 𝑔𝑔 and 𝑓𝑓(𝜎𝜎) from a set of measurements generously provided by Prof. Daniele 
Davino from Università degli Studi del Sannio di Benevento, see a selection of measured data in Fig. 2. or 
Davino et al. (2013). For this purpose, the weighted least squares optimization method was used, see Fig. 
3 and Fig. 4. It has turned out that 𝑔𝑔 and 𝑓𝑓(𝜎𝜎), see Fig. 5 (right), cannot be uniquely identified unless a 
restrictive condition such as  𝐺𝐺 = ∫ 𝑣𝑣𝑔𝑔′(𝑣𝑣)d𝑣𝑣∞

0 = 1 is imposed. By (6), the shape of 𝑔𝑔 corresponds to a 
magnetization curve, cf. Fig. 2 (left). 

 
Fig. 2: Magnetic (left) and magnetostrictive (right) cycles at different constant stresses 

In the hysteresis-free model, the equation (1) transforms into the following form: 
𝑑𝑑
𝑑𝑑𝑑𝑑

 �µ0𝑓𝑓 (𝑡𝑡)𝑢𝑢(𝑡𝑡) +  𝑔𝑔(𝑢𝑢)(𝑡𝑡)� + 𝛼𝛼�ℎ(𝑡𝑡) − ℎ0(𝑡𝑡)� = 0.                                         (7) 

The energy 𝐸𝐸 harvested during a time period is then determined by (4), where ℎ(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) ∙ 𝑓𝑓(𝑡𝑡), 
𝑢𝑢(𝑡𝑡) solves (7). The difference between the energy values in the model with hysteresis (𝐸𝐸 =  1.31061 ∙
10−5   for a particular setting) and the model without hysteresis (𝐸𝐸 =  2.31054 ∙ 10−5 ) is acceptable. 

The function g can be considered uncertain and results similar to those depicted in Fig. 1 (right) can 
be obtained. 

 
Fig. 3: Difference between the experimental data and the model output for σ1 = 1 [kPa].  
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Fig. 4: Difference between the experimental data and the model output for σ3 = 39 [MPa]. 

  
Fig. 5: Left: Identified function ψM. Right: Identified function f(σ) for a galfenol rod. 

5. Conclusions  

In the hysteresis model, the bottleneck is in solving the differential equation containing the Preisach 
operator. Although the best/worst case scenarios are searched for in parallel to speed up the membership 
function construction, the calculations take hours in the Matlab environment. The model without 
hysteresis is much faster and its accuracy is on par with the model with hysteresis. As a consequence, the 
simplified model can be used to accelerate calculations if only a small hysteresis effect is present. 

A question has arisen about the degree of the correctness of the Preisach density function published in the 
literature. A new, nonparametric identification would be useful for further uncertainty quantification. 

It can also be observed that the accuracy of the hysteresis-free model is limited especially if the stress is 
large, see Fig. 4 for instance.  A more advanced model with a feedback is the subject of the current 
research. 
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