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Abstract: Here we work with the system of equations describing the non-stationary compressible turbulent 
multi-component flow in the gravitational field, and we focus on the numerical solution of these equations. 
The mixture of perfect inert gases is assumed. The RANS equations are discretized with the use of the finite 
volume method. The exact solution of the modified Riemann problem (original results) is used at the 
boundary faces. The roughness of the surface is simulated using the alteration of the specific dissipation at 
the wall. The presented computational results  are  computed with the own-developed code (C, FORTRAN, 
multiprocessor, unstructured meshes in general). 
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1. Introduction 

The physical theory of the compressible fluid motion is based on the principles of conservation laws of 
mass, momentum, and energy. The mathematical equations describing these fundamental conservation 
laws form a system of partial differential equations. The aim of this work is to numerically simulate the 
complicated behaviour of the perfect gas mixture.  In this contribution we consider the Reynolds- 
Averaged Navier-Stokes equations with the k-omega model of turbulence. This system is equipped with 
the equation of state in more general form, and with the mass conservation of the additional gas specie.  
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Here t  is time, 321 ,, xxx  are the space coordinates, 321 ,, vvv  are the velocity components, 1Y  is the 
mass fraction of the additional gas specie, TCµs  is the diffusion coefficient, and 

1YS  denotes the source 
term. We focus on the numerical solution of these equations.  

2. Methods 

For the discretization of the system we proceed as described in Kyncl & Pelant (2000). We use either 
explicit or implicit finite volume method in order to discretize the analytical problem, represented by the 
system of equations in generalized (integral) form. In order to apply this method we split the area of the 
interest into the elements, and we construct a piecewise constant solution in time. The crucial problem of 
this method lies in the evaluation of the so-called fluxes (and its Jacobians) through the edges/faces of the 
particular elements. One of the most accurate method (and perhaps the most accurate method) is based on 
the solution of the so-called Riemann problem for the 2D/3D split Euler equations. The analysis of this 
problem can be found in many books, i.e. see M. Feistauer, J. Felcman, and I. Straškraba (2003), E. F. 
Toro (1997).   Unfortunately, the exact solution of this problem cannot be expressed in a closed form, and 
has to be computed by an iterative process (to given accuracy). Therefore this method is also one of the 
most demanding. Nevertheless, on account of the accuracy of the Riemann solver, we decided to use the 
analysis of the exact solution also for the discretization of the fluxes through the boundary edges/faces. 
The right-hand side initial condition, forming the local Riemann problem, is not known at the boundary 
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faces. In some cases (far field boundary) it is wise to choose  the right-hand side initial condition here as 
the solution of the local Riemann problem with given far field values, which gives better results than the 
solution of the linearized Riemann problem. It can be shown, see Kyncl (2011), that the right-hand side 
initial condition for the local problem  can be partially replaced by the suitable complementary condition. 
In order to prescribe some variable (for example pressure) by chosen value at the boundary, the local 
modified Riemann problem must have a solution, otherwise the value cannot be used at the boundary. 
This was the main idea behind the construction of the shown boundary conditions by preference of certain 
variable. On the contrary to the solution of the initial-value Riemann problem, the solution of the 
modified boundary problems can be written in a closed form. Therefore it is not computationally 
expensive to use the constructed boundary conditions in the code. Various original modifications of the 
Riemann problem (and exact solutions of these modifications) are used at the boundary. In general we 
prefer the given pressure distribution combined with the given total variables at the inlet. 

The own-developed software (C,FORTRAN) is based on the finite volume method with implicit or 
explicit time discretization, solution is computed on unstructured 3D meshes in general, OpenMPI and 
MPI parallelizations are used.  The large linear systems within the implicit method are solved with the 
implemented preconditioned GMRES matrix solver. The roughness of the surface is simulated by the 
adjustment of the specific dissipation at the wall, shown in Wilcox (1998).  

3. Examples  

In order to simulate the wall roughness we choose the simple channel flow. The air flows over the smooth 
and rough surface, the channel is 30 m long, regime 15 1−⋅ sm . Comparison of the computed values of 
the normed velocity +U  (red lines) at the mx 251 = (red cut) with the law of the wall, described in 
Wilcox (1998), shown in ++ UY ,  graph, figure 1.. Here +Y  is the normed distance from the wall y . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The wall roughness simulation, channel flow. Isolines of the turbulent kinetic energy and the 
comparison of the computed data (red line) with the law of the wall (green line). 
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     Further we show the simulation of the gas mixture. The 17 m long channel (with the bump at the 
bottom wall at the distance 14m ) is filled with the air, regime15 1−⋅ sm . At the inlet, the boundary 
condition with the preference of total quantities ( Pa 101325,15.273 00 == pKT ) and the direction of 
velocity (1,0,0) was used, together with the turbulent kinetic energy intensity set to 0.1, turbulent 
viscosity ratio set to 0.01. Outlet boundary condition by the preference of pressure  was used, the pressure 
value was estimated using the Bernoulli equation for the compressible flow (isentropic relations) for the 
given regime 15 1−⋅ sm . Figure 2. shows the computed distribution of the velocity and the turbulent 
kinetic energy in the channel, and also in the selected section of the further interest. The computed data 
from this computation were used for the initial and boundary conditions (the total values conservation at 
the inlet, pressure preference at the outlet) for the next simulation of the gas mixture propagation. Here 
the computational area was restricted to the channel section (by x coordinate) from -1 to 2. 

Fig. 2: Channel flow simulation, isolines of the velocity and the specific turbulent kinetic energy. 

The additional gas specie enters the area through the boundary condition, fixed source, or with the use 
of initial condition. The picture sequences in figure 3. demonstrate the propagation of the additional gas 
specie into the area. Here we tested the various types of the possible pollution source. The computations 
for the fixed source are visually comparable to the experimentally obtained data. 

 
Fig.3: Propagation of the additional gas specie in time, isolines of the mass fraction 1Y . 

The figure 4. shows the simplified simulation of the gas mixture flow over the simple terrain. Surface 
data were given by a set of point coordinates (left picture). Then the surface mesh was constructed and 
volumes created using own software. Computation run with the regime velocity 4 1−⋅ sm , and fixed 
emission source located at the chosen point. The aim of this computation was to achieve relatively 
quickly some estimate of the gas dispersion in the case of some possibly dangerous pollution. 
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Fig.4: The gas specie dispersion over simple terrain. 

4. Conclusions (style - EM 2016 Main chapter) 

This paper shows the numerical simulation of the mixture of two inert perfect gases in 3D. The numerical 
method (finite volume method) is applied for the solution of these equations. Own software was 
programmed. The modification of the Riemann problem and its solution was used at the boundaries. 
Elementary examples show good coincidence with the experimentally obtained results. The desired 
intention was to use the modified software for the quick estimation of the gaseous pollution of the air, 
which may be critical in the case of the sudden leakage of the substances hazardous to health. The 
estimates computed with this software are undoubtedly more precise than a set of concentric circles, 
which is being used now days. Further comparisons with the experimental data (from the wind tunnel) are 
still in the process. 
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