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CENTRAL DIFFERENCE METHOD APPLIED FOR THE BEAM
RESTED ON NONLINEAR FOUNDATION (PROGRAMMING AND
EVALUATION OF RESULTS)

S. Michenkovd, K. FrydrySek™

Abstract: Thiswork presents practical applications of experimental and numerical approachesin the solution
of straight beams on elastic foundations. There are tangent-linear, nonlinear (i.e. linear + arcus tangent) and
secant-linear approximations for dependencies of distributed reaction forces on deflection in the foundation.
For solutions of nonlinear problems of mechanics, the Central Difference Method is applied in combination
with the Newton Method. The results acquired by linear/nonlinear solutions are evaluated and compared.
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1. Introduction
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Fig. 1. Solved beam of length 2L resting on an elastic foundation and dependence of reaction force on
deflection (i.e. foundation load-settlement behaviour).

Beams on elastic foundations are frequently useth@ineering; see (FrydrySek et al., 2013). Thiskvi®

a continuation of our previous works. The symmatriieam of length 2L = 2x12.045 m with cross-sectio
bxh (b =0.2 m, h=0.4 m) is resting on an elafstimdation. The beam is loaded by force F = PNL.O
The modulus of elasticity of the beamBs= 2x10* Pa and the principal quadratic moment of the beam

3
cross-section ig;;r = %. The nonlinear behavioai = qr(v) [Nm?] of the distributed reaction force on

deflection v [m] in the foundation was approximabgdangent-lineagg; = k,v = 1.7422 x 101%, non-
linear qry = kqv + kgarctg(cav) = 5.21 X 10%v 4+ 9.52 x 10°arctg(1.83 x 103v) and secant-linear

qr3 = k,v = 4.3866 x 108v functions. The nonlinear approximatigg, fits the best with experiment.

d _ lavtkaaretglca) _ o |y the cases of linear
dx4 E]ZT '

solutions (i.e. tangent-linear and secant-linegraxmations), the functiok,arctg(c,v) = 0. The pa-
rametersc,, k, andc, were acquired from measuremetps by curve fitting; see (Frydrysek et al., 2013).

The solution deals with nonlinear differential etioa
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2. Central Difference Method (CDM) — Study case of Baa on Elastic Foundation

According to CDM (see Fig. 2 and (FrydrySek et 2013), i.e. discretization of a nonlinear diffeiah
equation), the system of n+1 nonlinear equationsyiproximations|r;, qr; andqgs can be derived.
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Fig. 2. CDM - Divisions of the beam (study case).

Hence, the system of nonlinear equations includesdary conditions,

[M]{v} + ajarctg(c,{v}) — {b} = {0}, (1)
‘c -8 2 0 0 0 0 .. 0
4 7+a, -4 1 0 0 0 .. 0
1 —4 ¢ -4 1 0 0 .. 0
0 1 -4 ¢ -4 1 0 .. 0 b oo
where M =|: & ¢ i o i L | =40, @y ={"h
0 0 1 -4 ¢ -4 1 0 - ;
0 0 0 1 -4 ¢ —4 1 0 n
0 0 0 0 1 -4 5+a -2
o . 0 0 0 0 2 -4 2+a
FA3 _ kq0* _ kgAt

A= E (see Fig.2),b = c=6+a,.

a, = =
Elzr’ Y EJzr’ % Elgzr’

3. Newton Method Iterative Approach
The nonlinear equations (1) can be solved itergtivia Newton Method as

{(j+1)v} _ {(j)v} _ [<1’>I]_1 {[M] {(j)v} + a,arctg (Ca {<j>v}) - {b}}- (@)

Where vectors of displaceme{ﬁ?v} and{(j+1)v} are old and new iterations aﬁal] is the Jacobian
defined by

. a{[M] Dyliqg arctg( cq s —{b}
o] = (Al resre0]) | -
0" v
k=0,1,2,..,n
Matrix [(1')]] is changing for each iteratigj}. However, matri>{<j>]] is "similar" to matrix{M] (i.e. both

are sparse and their distinctions are only in rda&gonals of these matrices) which is suitablgfogram-
ming. For more information, see (FrydrySek et2014; Michenkova et al., 2014).

4. Evaluation of Acquired Results

Some basic results for a long beam are presenteig.ii3 (i.e. dependencies for deflection, slomsding

moment, shear force and reaction force on lengtndioatex for qr;, qrz andqgrs approximation of
2
foundation). The slope of the beam is definegl;ashe bending moment is defined Mg = —EJ %,

3
the shear force is defined d5= —E]ZT% and the reaction force in the foundation is defin@ qg4,

gr2 andqgs functions. The distinctions between each typeahtiation are evident. For presented inputs,
the tangent-linear approximatigg, and nonlinear approximatiar, of foundation give nearly the same
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results (i.e. good agreement with experiment niotethapter 1). However the secant-linear approxnat
qrs gives unreal results. This is caused by “quitel8rwading force F = 7x1®N.
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Fig. 3. Dependence of deflection, dope, bending moment, shear force and distributed reaction force on
coordinate xe(0; L) of the beam for different types of foundation approximations (results acquired by
CDM with MATLAB).

However, increasing of external force F brings bkiginfluence of nonlinearity (i.e. bigger differesc
between linear and nonlinear solutions). Hence,eddpncies of maximum values of displacement
vmax [M], bending momen¥,,,,,, [Nm] and reaction forcegrmax [Nm?] on force F are presented in
Fig. 4. These figures were printed for the samerbesssted on elastic linear/nonlinear foundation.
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Fig. 4. Dependence of maximum deflection, maximum bending moment and maximum reaction force on
external force for the beam on different types of foundation approximations (results acquired by CDM
with MATLAB).

Now, the distinctions between each type of fourmhasipproximations (i.e. influences of nonlineasitie
are evident. As it was mentioned, the nonlinear@pmationqg, is the best approximation of the reality.
Therefore, for the small deflections of foundatitnwell tangent-linear approximationgg, (i.e. for
F € (0;3 x 107) N). Otherwise, for larger deflections fits well aatlinear approximationgs (i.e. for
F € (4 x 107;6 x 107) N). However, nonlinear approximatigg, fits well for all cases of deflections (i.e.

for F € (0;8 x 107) N). To put that into context, in Fig. 4, there isnked the value of loading force
F = 7x10 N which is connected with the solution presentesig. 3.

5. Future Application
The use of an elastic foundation including nonliitess is a suitable way of performing numericapex-

mental modelling of engineering problems. For exammodelling of external fixators designed for the
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treatment of complicated bone fractures, modelhfigmoral screws designed for the treatment ofitim
femoris" fractures (see Fig. 5 and reference F8gk et al., 2013).
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Fig. 5. Examples of beams on elastic foundations in the field of biomechanics (collum femoris fracture
and its treatment and numerical solutions of femoral cannulated screw).

The derivation, rapid solutions and applicatioowf own simple numerical model based on CDM open
up new possibilities for further applications usiagtochastic approach (i.e. millions of solutigvith
random inputs and outputs can be easily simulafé®tefore, the application of the CDM + probaliitis
approach connected with the probabilistic religp#issessment of femoral screws is the main fottieo
future work, see (Marek et al., 1995).

6. Conclusions

The measured material properties of the elastiodation were evaluated and approximated in thrgswa
(via easy bilateral tangent-linegg, = k,v = 1.7422 x 10'%v, complicated but complex bilateral nonlin-
earqr, = kv + kgarctg(c,v) = 5.21 X 10%v + 9.52 X 10°arctg(1.83 x 103v) and easy secant-linear
qr3 = k1v = 4.3866 x 108v functions). Beams on elastic linear and nonlirfeandations were solved
via the CDM and iterative Newton Method using MATBAoftware. The iterative approach is necessary
for nonlinear solutions. From the results, it igdewnt that the nonlinear approximation for the hébar of

an elastic foundation fits very well with experineiand gives the best results. However, the apjgita

of the CDM and iterative Newton Method (i.e. sadas of nonlinear problems) is possible, though com-
plicated (i.e. time-consuming). Tangent/secantdiregpproximations of the elastic foundations betavi
give worse results, though acceptable in some chsasuld be dangerous to place blind faith in dasy
linear approximation of the foundation.

In references (FrydrySek et al., 2013; FrydrySeklet2014; Michenkova et al., 2014) are presented
other approximations and solutions of similar beasted on elastic foundation with different behavio
Possible future improvements are explained too. dpication of CDM is quite easy, comprehensible
and suitable for beam structures. Numerical apfvesased in this article could be applied in margi-e
neering solutions.
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