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Abstract: This contribution focuses on a double-looped reliability-based design optimization, in which the 
reliability of the system is evaluated in the inner loop and the designing process is performed in the outer 
loop. The double-looped formulation provides the most accurate results but it is computationally demanding 
especially if advanced simulation techniques are used for rare failure events. The selection of the method for 
the reliability assessment is therefore crucial to obtain the best results with the lowest possible computational 
efforts. A quasi-Monte Carlo simulation, an Asymptotic sampling and a Subset simulation are therefore 
utilized in the inner loop and the results are compared for two reliability-based design optimization 
benchmarks. 

Keywords:  Multi-objective Optimization, Reliability-based Design Optimization, Subset Simulation, 
Monte Carlo Method, Asymptotic Sampling. 

1. Introduction 

A structural optimization is a process that seeks the best design under some predefined constraints. 
A deterministic model is usually unrealistic due to the uncertain inputs such as material properties, 
a structural topology, loadings etc. The optimal design with deterministic variables often terminates at 
a boundary between the failure domain and the safe domain and even a small perturbation in inputs can 
lead to a fatal failure. For that reason, the model uncertainties are introduced; the parameter uncertainties 
are associated with the input data whereas the structural uncertainties express that the model need not 
clearly describe the physics of the problem. The optimization under uncertainties looks into two main 
tasks; the first task (a robust design optimization) deals with the everyday fluctuations in inputs and 
provides a design with a minimum price that is less sensitive to small perturbations in inputs; the second 
task (a reliability-based design optimization) concentrates on worse-case scenarios and offers an 
economical design with large safety.  

A reliability-based design optimization (RBDO) can be formulated by two linked loops. An optimizer 
provides a design in the outer loop, for which a probability of failure is evaluated in the inner loop. The 
double-looped procedure allows a very accurate safety appraisal of each design without any kind of 
approximation. However, this formulation suffers from large computational demands if a classical Monte 
Carlo method is used. Fortunately, advanced simulation techniques such as an Asymptotic sampling 
(Bucher, 2009) and a Subset simulation (Au & Beck, 2001) can be used for the reliability assessment and 
the accuracy can be almost maintained with the drastic computational effort reduction. 

2. Multi-objective double-looped reliability-based design optimization 

A classical formulation of the RBDO minimizes a cost function f(d) such that the reliability constraints 
βi(x,d) ≥ βi

min as well as deterministic constraints Hj(d) ≤ 0 have to be satisfied. Design variables are 
arranged in vector d (e.g. deterministic variables or means of random variables), whereas uncertain 
parameters are arranged in vector x. A generalized reliability index βi for failure mode i is obtained by the 
inverse cumulative distribution function of the standard normal distribution β = Φ-1(1 − pf) where pf is 
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a probability of failure; βi
min is the corresponding lower bound of the reliability index. In case that the 

setting of the lower limit βi
min is unclear, the single-objective optimization can be reformulated into 

a multi-objective optimization; minimization of a cost function remains and maximization of the 
reliability indexes for all failure modes are added as the next objectives: 

 min𝑓𝑓(𝒅𝒅), (1) 

 max𝛽𝛽𝑖𝑖(𝒙𝒙,𝒅𝒅) , 𝑖𝑖 = 1, … ,𝑛𝑛𝐼𝐼, (2) 

 𝑠𝑠. 𝑡𝑡.    𝐻𝐻𝑗𝑗(𝒅𝒅) ≤ 0, 𝑗𝑗 = 1, … ,𝑛𝑛𝐽𝐽, (3) 
            𝒅𝒅min ≤  𝒅𝒅 ≤ 𝒅𝒅max.   (4) 

A probability of failure pf is evaluated in an n-dimensional space of random variables X1,…, Xn as 

 𝑝𝑝𝑓𝑓 = Prob[𝐹𝐹] = Prob[𝐺𝐺(𝑿𝑿) ≤ 0] = ∫ 𝑓𝑓𝑋𝑋(𝒙𝒙) d𝒙𝒙𝐺𝐺(𝑿𝑿)≤0 , (5) 

where fX(x) is a joint probability density function, F denotes the failure, and G(X) is a limit state function. 
A limit state G(X) = 0 divides the space into the failure region G(X) ≤ 0 and the safe domain G(X) > 0. 
A probability of failure is solvable analytically only for some specific problems and traditional numerical 
integration is not applicable for large n. Statistical sampling techniques based on a Monte Carlo method 
allow to estimate the expected value of pf. Equation (5) is possible to reformulate as  

 𝑝𝑝𝑓𝑓 = ∫ 𝐼𝐼𝐺𝐺(𝒙𝒙)𝑓𝑓𝑋𝑋(𝒙𝒙) d𝒙𝒙,∞
−∞  (6) 

where IG(x) is an indicator function that is equal to one for a failure domain and zero otherwise. For large 
number of samples, pf in Equation (6) can be estimated by a ratio of the number of defective samples and 
the number of all samples. The number of total samples is recommended to set from 10/pf with 
a coefficient of variation CVMC around 30 %, over 100/pf with CVMC around 10 %, to 500/pf with CVMC 
around 5 %. In case that a sophisticated sampling strategy such as Halton or Sobol sequences or Latin 
hypercube sampling is used, the results are even more credible. The number of samples is however still 
enormous for small probabilities of failure. 

A Subset simulation (Au & Beck, 2001) is based on a formulation of the failure event F as an 
intersection of the intermediate failure events Fi. The rare event problem is then reformulated as a series 
of more frequent events that are easier to solve. The probability of failure is as follows  

 𝑝𝑝𝑓𝑓 = Prob[𝐹𝐹1] ⋅ ∏ Prob[𝐹𝐹𝑘𝑘𝐿𝐿
𝑘𝑘=2 |𝐹𝐹𝑘𝑘−1]. (7) 

The failure probability of the first intermediate domain is evaluated by a classical Monte Carlo method 
with hundreds of samples N. These samples are sorted in an ascending order and a limit state function is 
shifted such as Prob[F1] is equal to a predefined value p0. The first (p0 ∙ N) samples are used as seeds for 
the simulation of samples from conditional probabilities by a Markov chain Monte Carlo (MCMC) with 
modified Metropolis algorithm. In each level k, samples obtained by MCMC are sorted and first (p0 ∙ N) 
samples serve as seeds in k+1 step together with a proper shift of the limit state function. The last level L 
is reached if the probability of failure with the original limit state is greater than p0. 

An Asymptotic sampling (Bucher, 2009) is a novel methodology that predicts a reliability index from 
an asymptotic behavior of the probability of failure in an n-dimensional independent and identically 
distributed normal space. A principal idea is to sequentially scale random variables in a standard normal 
space over the standard deviation σ by a factor φ that is lesser than 1 to get more samples from a failure 
domain. In step k, scaled standard deviations σk equal to σk-1/φ are used to perform a Monte Carlo 
simulation with hundreds of samples. A corresponding reliability index βk in step k and a factor φ raised 
to the power of k are saved as a support point for the following regression. After sufficient steps k, the 
approximation of the reliability index is obtained as a summation of the regression coefficients A and B 
after a regression via support points β and φ 

 𝜷𝜷 = 𝐴𝐴𝝋𝝋 + 𝐵𝐵𝝋𝝋−1. (8) 

A First order reliability method (FORM) (Hasofer & Lind, 1974) is not a simulation technique but an 
often used analytical approximation method in RBDO for its low computational demands. Nevertheless, 
it is inaccurate for highly nonlinear limit state functions. It is based on the linearization of the limit state 
function in a design point u* in the standard normal space (SNS). The design point can be found by any 
optimization method as u* = min(uTu)-1 subject to G(TSNS→OS(u)) = 0. A transformation from the standard 
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normal space to the original space and vice versa is possible via Rossenblat transformation 
x = TSNS→OS(u). The approximation of the reliability index is then the shortest distance from the origin of 
SNS to the design point lying on the limit state surface. 

3. Numerical benchmarks 

Both benchmarks were optimized by Non-dominated sorting genetic algorithm II (Deb et al, 2002) with 
200 individuals and 50 generations to obtain a rich approximation of the Pareto-set and the Pareto-front. 
The Pareto-front was bounded such that a reliability index is from an interval [0, 5.5] for both 
benchmarks. Both problems converged sufficiently in approximately the 10th generation. An Asymptotic 
sampling as well as a Subset simulation was set to have CVβ equal to 5 % in the single objective optimum 
taken from literature with 1,000 independent runs. 

The first example is taken from (Chen et al, 2013) and it is reformulated into a multi-objective 
optimization task in (Pospíšilová & Lepš 2015). The cost function is quadratic, the limit state function is 
highly nonlinear. The limit state G(x) = 0 is also depicted in Fig. 1 with the solid line; the feasible domain 
is inside the shape. Both variables have the normal distribution and they are statistically independent. 
Means are design variables. Since a Monte Carlo method has high computational demands, an 
Asymptotic sampling was used to predict a probability of failure and the necessary number of samples 
was computed subsequently with 10/pf. The lower tail of the Pareto-front is almost identical for all used 
reliability assessment methods, FORM fails for reliability index slightly greater than 2.3 and it is 
problematical and unreliable for the rest of the Pareto-front. The Pareto-front with a Monte Carlo method 
oscillates between the front with an Asymptotic sampling and a Subset simulation approximately from 
reliability index equal to 4. At the upper tail, a Monte Carlo method is not reliable since these samples are 
in the failure domain according to the left figure in Fig. 1. The total number of samples during whole 
optimization process was measured in 10 independent runs: an Asymptotic sampling used ca. 2.3 ∙ 108 
samples, a Subset simulation used ca. 1.4 ∙ 108 of samples, FORM in contrast used only 2.4 ∙ 105 samples. 
A Monte Carlo method was used only once with enormous 5.4 ∙ 1011 samples leading to high CV. 

 
Fig. 1: Approximations of Pareto-set (left) and Pareto-front (right) for Example 1. Abbreviations: 

FORM – First order reliability method, AS – Asymptotic sampling, SS – Subset simulation, MC – Monte 
Carlo method, SO – single optimum from (Chen et al, 2013).  

The second example is concentrated on a minimization of the material volume of a 23-bar planar truss 
bridge and maximization its safety. The limit state function is represented by a design rule that the mid-
span deflection should not exceed 10 cm. The single objective formulation in (Dubourg, 2011) is 
reformulated into the multi-objective in (Pospíšilová & Lepš, 2013). Young’s moduli E1 and E2 have 
Lognormal distribution; cross-sectional areas A1 and A2 have Lognormal distribution as well with means 
as design variables µA1 and µA2; gravity loads P1 - P6 have a Gumbel distribution. All variables are 
statistically independent. A Subset simulation behaves the same as an Asymptotic sampling on interval 
[0, 3.1]. The rest of the Pareto-front with a Subset simulation probably needs more samples and/or levels 
and therefore an adaptive setting. FORM has a similar trend as an Asymptotic sampling but FORM 
slightly overestimates the reliability; this trend is obvious from the single optimum (Dubourg, 2011) lying 
on the Asymptotic sampling Pareto-front. 
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Fig. 2: Approximations of Pareto-set (left) and Pareto-front (right) for Example 2. Abbreviations: 

FORM – First order reliability method, AS – Asymptotic sampling, SS – Subset simulation, SO – single 
optimum from literature (Dubourg, 2011).  

4. Conclusions  

The multi-objective formulation of a reliability-based design optimization provides much more 
information than a single-objective case for a decision maker, who can subsequently decide which 
reliability level is worth it. On the other hand, computational efforts are much higher than for a single-
objective formulation and therefore the most computationally demanding part, the reliability assessment, 
has to be chosen carefully. The double-looped formulation is affordable with advanced simulation 
techniques such as an Asymptotic sampling or a Subset simulation. Even with a basic implementation, the 
results are relatively credible with fewer number of samples than with a classical Monte Carlo method 
and more credible than with FORM.  
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