
 22nd International Conference  
ENGINEERING MECHANICS 2016 

Svratka, Czech Republic, 9 – 12 May 2016 

PARALLEL COMPUTATIONS AND C++ STANDARD LIBRARIES 

V. Rek*, I. Němec** 

Abstract: In this paper, the form of modifications of the existing code written in C programming language 
for the calculation of structures using the explicit form of the Finite Element Method is introduced. It uses the 
possibilities of multithread running, which is now supported at the level of native C++ programming 
language using standard libraries. Thanks to the high degree of abstraction that is provided by 
contemporary C++ programming language, a respective library created in this way can be generalized for 
other purposes of usage of parallelism in computational mechanics. 
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1. Introduction 

Due to the significant expansion of multi-core processors in the past decade, many older applications 
designed to run sequentially have begun to become obsolete, mainly due to the performance of available 
hardware. 

As in the past, and even now, development tools for the development of software applications are 
slightly lagging behind the choices of available hardware. Alternatives of how to benefit from multi-core 
processors were technologies such as Intel Threading Building Blocks or Intel Cilk++, or others which 
also require special installation. Another possibility was to use an application interface provided directly 
for the respective operating system such as Windows Win32 API (Hart, 2015) or POSIX (Kerrisk , 2010) 
for Unix-like operating systems, which are often quite cumbersome and limited to the possibilities of C 
programming language (Prata, 2004). 

Since the year 2011, when the new standard of C++ programming language was introduced (version 
11), developers have been given the possibility to use threads and all other necessary resources to support 
thread synchronization (mutex, semaphore, etc.) on the level of the native programming language using 
its standard libraries (Williams, 2010). Those abilities included programming languages like Java or C#. 
The main disadvantages are their performance and occasionally their limited portability. 

Using the new version of the C++ programming language has been possible for some time in 
Microsoft Compiler since the Microsoft Visual Studio 2010 IDE (abbrev. for Integrated Development 
Environment) or in some freely available compilers. 

The new standard libraries of C++ programming language already provide an effective 
interconnection of strong object-oriented programming language and multithread running, which until 
recently, had been largely limited. Computational software tools that are already written in C or C++ 
programming languages are now able to enrich the possibility to use parallelism while maintaining the 
portability of code. In a field of an explicit form of the Finite Element Method (Wu & Gu, 2012) the 
possibility of usage of parallelism is more than desirable, mainly because of time-consuming calculations, 
which is caused by the conditional stability of explicit methods used for the direct integration of equations 
of motion.  
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2. Explicit Form of the Finite Element Method 

This is an explicit algorithm that was originally designed for parallel computing on graphics cards using 
NVIDIA CUDA (Rek & Němec, 2016). 

The algorithm is based on the explicit form of the Finite Element Method, which is based on an 
artificial transformation of the problem of statics to dynamic problem with damping. At the end we get 
semi-discrete second-order differential equations of motion, which we use for direct integration by the 
finite difference method (Har & Tamma, 2012). 

 { } { } { } { } ,EM q C q K q F+ + =   (1) 

where { }q , { }q and { }q are vectors containing nodal accelerations, velocities and displacements 

respectively. { }K q  represents internal forces { }( )IF  and { }EF  the external forces. M is the lumped 
mass matrix and C is the damping diagonal matrix. 

Using the Central Difference Method for direct integration of equations o motion we obtain the following 
explicit expression for the calculation of the new displacement. For the thi  degree of freedom, equation 
(1)  leads to the explicit formula as follows: 
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3. Parallel Algorithm 

The algorithm is based on a parallel assembly of stiffness matrices for each of the finite elements and the 
subsequent calculation of the new displacements using explicit formula (2). Assembly of stiffness 
matrices and external force vector for continuous load is schematically shown in Fig. 1. 

 
Fig. 1: Parallel composition of external and internal force vectors. 

 

For each finite element node, the sum of the contributions from the neighboring finite elements for the 
respective node is performed. This procedure is simply shown in Fig. 2. 

524



 

 4 

 
Fig. 2: Parallel composition of new deflections of finite element nodes. 

 

4. C++ Implementation 

For the purpose of compiling multithreaded run a general generic class “FEVRThreadFactory” was 
composed. It is based on the use of generic functions, which are then executed on the cores of a multi-
core processor according to the settings which come from the object designed for scheduling of respective 
problem. The declaration and bindings of classes, which constitute the respective model of the solver, 
including the declaration of input data for each thread is in Fig. 3. A diagram of the synchronization 
object and global computing functions is in Fig. 4. 

The underlying algorithm originally uses synchronization barrier only. This is frequently used 
synchronization procedure in GPGPU. Due to the nature of the algorithm used, a different type of 
synchronization is not needed. Using the C++ native threads and its standard libraries is well described in 
book C++ Concurrency in Action: Practical Multithreading (Williams, 2010). 

 
Fig. 3: UML class diagram of parallel solver. 
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Fig. 4: UML class diagram of synchronization barrier object and encapsulating class for the 

computational global functions. 

 

5. Performance Test 

Test was performed on a model that consists 5 000 finite elements (30 906 DOF) with 100 time steps. The 
effectiveness of the used algorithm was tested on the three different processors as follows: Intel Core2 
Duo SU9400 - 1.40 GHz (2 Cores / 2 Threads), Intel Core i5-3320M Ivy Bridge - 2.6 GHz (2 Cores / 4 
Threads) and Intel Core i5-4690 3.5 GHz (4 Cores / 4 Threads). Achieved performance of execution 
(Sequential time [s] / Parallel time [s]): 1.119, 1.972, 3.826. 

6. Conclusions 

The introduced approach to the potential usage of the modern form of the C++ programming language 
and its new standard libraries allows us to make better use of the support of parallel computations on the 
level of native programming language. Functions from the NVIDIA CUDA library can be easily applied 
in a C++ code, and thus, the existing computational tool could be adapted to exploit the opportunities of 
multicore processors. Respective tests on different processors proved the effectiveness of the used 
approach. 
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