
 22nd International Conference  
ENGINEERING MECHANICS 2016 

Svratka, Czech Republic, 9 – 12 May 2016 

MECHANICAL RESPONSE OF COMPOSITES WITH RESPECT            
TO INCLUSION INTERACTION 

S. Šulc*, T. Janda**, J. Novák*** 

Abstract:  This paper presents the major features of the µMECH micromechanical library, which gives the 
analytical solutions to micromechanical fields within media comprising ellipsoidal inclusions. The solutions 
are based on Eshelby´s stress-free eigenstrains and the equivalent inclusion method. Unlike the case of a 
single inclusion in an infinite matrix, for which the analytical solution is known, a fast and yet robust 
approach to the problem of multiple inclusions and their mutual interactions is still missing. 
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1. Introduction 
In composite materials the strain and stress concentration is of vital interest since it governs crack 
initializations. Numerical analyses allow us to predict material behaviour and identify regions where the 
concentration occurs. In the case of a composite consisting of a matrix phase and embedded 
heterogeneities of an ellipsoidal shape, an approach based on the solution of J. D. Eshelby (1957) to the 
single inclusion problem can be readily employed. We refer to an ellipsoidal heterogeneity using the term 
“inclusion”. The present contribution describes principles of analytical methods for evaluating the 
mechanical fields in a particulate composite. The methods are implemented in the µMECH library. 

2. Single-inclusion problem 
The problem of a single ellipsoidal inclusion in an infinite matrix was successfully solved by     J. D. 
Eshelby in 1951. Making use of Green´s function, Eshelby derived explicit formulae for the strain, stress, 
and displacement fluctuation fields. His fundamental contribution has been applied in many 
micromechanical models. In the following, we briefly review the fundamental notions related to the 
solution. 

Assume that a material is subjected to a far field loading that would result in a constant strain ઽ  if 
the material was homogeneous. However, due to the presence of the inclusion, strain fluctuations, 
denoted as ઽ∗ , occur in the material. In the sequel we use the term “perturbation” when referring to the 
fluctuations. 

The strain perturbation together with the prescribed external load gives us the total strain as  

                                                                 ઽ(ܠ) = ઽ(ܠ) + ઽ∗(ܠ).                                               (1) 

The ε0 is mapped to the equivalent eigenstrain ઽத  through 

                                                                 ઽத = ۰: ઽ ,                                                                 (2) 

where the tensor B depends on matrix and inclusion parameters. From ઽத  we compute the strain, stress 
and displacement perturbations. In the following we need only the strain perturbation  ઽ∗ computed as 
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                                                                 ઽ∗(ܠ) = :(ܠ)۲ ઽத .                                                     (3) 

The tensor D depends on the coordinates of the point of interest and again on the matrix and inclusion 
parameters. 

3.   Multiple-inclusion problem 

In the case of two or more inclusions in a matrix, we have to take their mutual interaction into account. 
Since there is no analytical solution, we propose a self-compatibility algorithm, which iteratively corrects 
ετ of each inclusion, until an acceptable tolerance η between the Euclidean norms of the two consecutive 
eigenstrains ઽ୧

த is achieved. 

We approximate the effect of an inclusion a on an inclusion b as the strain perturbation caused by the 
inclusion a in the centre of inclusion b, which we denote ઽୟ→ୠ

∗ . We take the perturbation as an additional 
external load on the inclusion b. 

 
Fig. 1: Multiple-inclusion problem. 

 
The structure of the self-compatibility algorithm for n inclusions can be summarized as follows: 
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At each iteration step, we update ઽ୧
 of the i-th inclusion as a sum of the prescribed external load ઽ  

and the strain perturbations caused by the remaining inclusions evaluated in the centre of the i-th 
inclusion. With the modified ઽ୧

 we update the equivalent eigenstrain ઽ୧
த. The comparison of  results with 

and without using this algorithm are in Fig. 3. 
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5.   Polynomial eigenstrains 

Introducing the effect of the remaining inclusions only through strain perturbation at centre of the treated 
inclusion gives sufficiently good results if the inclusions are distant enough such that the gradient of the 
eigenstrain is negligible compared to the average value of the eigenstrain in this case. However, when the 
inclusions get closer, the gradient starts to play an important role, see Fig. 1. In the vicinity of the 
considered inclusion it is not even close to linear function. As a result, the average value for an inclusion 
deviates significantly from the value in its centre leading to the underestimated results. 

This drawback can be diminished by replacing the constant eigenstrains with a polynomial function 
and using the known analytical solutions for polynomial eigenstrains. In particular, we have implemented 
the linear approximation, which seems to be sufficiently accurate even for short distance interaction. 

As an example we have analyzed a 2D problem consisting of three circular inclusions. Geometry of 
the task is depicted in Fig. 2. All the inclusions have radius 1.0 m. Young´s modulus of the inclusion 
material is 10.0 with the Poisson´s ratio of value 0.3. The matrix Young´s modulus was assumed 1.0 and 
the Poisson´s ratio 0.2. The prescribed external load corresponded to the uniaxial strain with the only non-
zero component ε୶

 = 1.0. 

 
Fig.2: Scheme of the three-inclusion problem. 

Fig. 3 shows a comparison of the proposed solutions and the reference solution obtained with Finite 
Element Method (FEM). Outside the group of inclusions the results provided by the polynomial solution 
closely resemble the FEM results. The importance of the self-compatibility algorithm and polynomial 
approximation of ઽத  gets further pronounced in the regions among inclusion, where the interactions play 
a significant role. 

4.   Internal perturbation fields 
In the multiple-inclusion problem the internal strain and stress perturbations are not constant and we 
cannot simply sum all the perturbations as we do in the case of points that are not in any inclusion. The 
first option to compute the internal fields is to use the polynomial solution also for the internal points. 
However, this leads to the loss of detailed distribution of eigenstrain which is limited by the polynomial 
approximation.  
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Fig.3: Results of the three-inclusion problem. Blue line: FEM.                                                                

Red line: Linear approximation of the ࢿఛ  with self-compatibility algorithm.                                        
Black line: Constant ࢿఛ  with self-compatibility algorithm.                                                                   

Green line: Constant  ࢿఛ   without self-compatibility algorithm 

We get the most accurate results employing the same principle as in the self-compatibility algorithm. 
We compute the strain perturbations of all other inclusions first. We sum them with the prescribed 
external load and take it as a new load for the inclusion with the point inside. Then, we map this load to 
ઽத  and compute ઽ∗  from Eq. 3. 

We compute the stress and displacement perturbations in the usual way, the only difference is that we 
use this recalculated ઽத instead of the one evaluated in the self-compatibility algorithm. 

6.   Conclusions  

The present results confirm the importance of accounting for the interaction among inclusions. We have 
presented two approximate solutions. In the first, the interaction was taken into account by employing the 
self-compatibility algorithm arising from the assumption of the constant equivalent eigenstrain within 
inclusions. In the second approach, we have extended this approach with the linear approximation. As 
expected, the latter approach gives better results when compared with the reference solution obtained with 
a Finite Element Method (FEM). Albeit the accuracy of the FEM solution was not reached the present 
methods yielded sufficiently accurate results with respect to their intended application. The µMECH 
library can solve much larger problems in a fraction of time when compared to FEM and thus provide 
fluctuation fields as a global enrichment functions for the generalized finite element methods. Our further 
effort aims improving the accuracy by quadratic polynomial approximation of the eigenstrains. 
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