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Abstract: In this paper we introduce an approach for the solution of a coupled discrete and finite element 

method (CDEM) designed for effective implementation on a graphics processing unit (GPU). A static 

problem is solved using dynamic relaxation while an optimum load-time history keeps the inertial forces 

small, thus eliminating the need for damping. Explicit time integration using central difference method is 

used. Each element is integrated independently and potential interelement contacts are enforced using 

penalty forces. This allows to avoid the need for forming global characteristic matrices and leads to a 

formulation well suited to GPU processing. To test the stability and accuracy of the proposed method, we 

start with a serial CPU implementation and examine a three-point bending test with the beam composed of 

dicrete deformable blocks (represented by traditional finite elements) connected by linear springs. The CPU 

code will serve as the starting point of the GPU implementation. 
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1. Introduction 

A GPU is a piece of hardware with a many-core architecture where all the cores have to perform the same 

instruction with their unique data within one instruction cycle (the SIMD approach to parallelism). The 

significantly higher computing performance as opposed to its CPU counterpart (see ("The CUDA C 

Programming Guide", 2015) for a detailed comparison of performances) has always made it attractive for 

scientific computations. However, since it was specifically designed for efficient processing of the 

graphics pipeline ("Graphics pipeline", 2016), the first attempts at using it for general-purpose computing 

had to deal with a lack of appropriate software development tools.  

A big step towards easier development of general purpose GPU (GPGPU) code was made in 2006 

with the introduction of the CUDA platform ("CUDA Toolkit Documentation", 2015) by the company 

nVidia. The platform introduces minor extensions for existing high-level programming languages (C/C++ 

and Fortran among others), which provide direct control over the GPU.  

Nowadays, GPGPU computing is used to accelerate calculations in many scientific fields. The 

reference (Fu et al., 2014) reports an 87x speedup on the stiffness matrix assembly and an 51x speedup on 

the linear system solver in their GPU implementation of the FEM pipeline. The reference (Wang et al., 

2013), which provided inspiration for our method, reports a speedup of up to 400 for single precision 

calculations. An important aspect of GPU programming is memory management. For the optimum 

performance, the data have to be kept in local memory, the non-local data access can be prohibitively  

expensive leading to high communication/computation ratio.  Furthermore, an efficient algorithm 

obviously has to be well suited for the SIMD architecture. 

2. Method of solution 

The problem we focus on is a domain consisting of individual discrete finite elements with mutual 

contacts (See Figure 1). This approach allows for the modelling of discrete cracking, for example, but as 

we are still in the early testing phase, the contacts are realized as linear elastic springs. We believe that if 
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we avoid the global stiffness matrix assembly, we can come up with an efficient GPU algorithm for the 

solution of the described problem. This is why we choose to use dynamic relaxation with explicit time 

integration to solve the linear static problem. Using the explicit integration allows us to calculate the 

internal forces for each element individually. The only information needed from the rest of the domain are 

the displacements  

 

Figure 1: A sketch of the CDEM domain with numbered nodes. The values 𝑘𝑛 and 𝑘𝑠 denote the normal 

and shear (tangential) contact stiffness, respectively. 

of the neighbor nodes (the nodes connected to the element’s nodes by springs). In this study, we consider 

2𝐷 plane stress elements. The element stiffness forces are obtained as 

𝒇𝒆𝒔 =  −𝑲𝒆𝒖𝒆 

and the damping forces as 

𝒇𝒅𝒂 = −𝑪�̇�𝒆 

where 𝒖𝒆 is the vector of nodal displacements of the element, �̇�𝒆 the vector of nodal velocities, 𝑲𝒆 

the element stiffness matrix and 𝐶 the damping matrix. In this study, we model dumping using Rayleigh 

model, where the damping matrix is expressed as a mass matrix multiplied by a so called Rayleigh 

coefficient 𝛼𝑐. The contact stiffness forces, 𝑓𝑐𝑠, are obtained node by node. In the simple case of full face 

contact, each node can have a maximum of two neighbors correspondingly to its two adjoining element 

edges. The contact stiffness is characterized by the local contact stiffness matrix 

𝑲𝒄,𝒍 = (
𝑘𝑛 0
0 𝑘𝑠

) 

where the values kn and ks denote the normal and shear (tangential) contact stiffness, respectively. 

The transformation matrix is defined based on the normal vector 𝒏 of the appropriate element edge as 

𝑻 = (
𝑛1 𝑛2

−𝑛2 𝑛1
) 

with 𝑛1, 𝑛2 being the components of the normal vector in the global coordinate system. The contact 

forces from each neighbor can now be calculated as 

𝒇𝒄𝒔,𝒏 = 𝑻𝑻𝑲𝒆,𝒍𝑻𝚫𝒖  

where 𝚫𝒖 = 𝒖𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 − 𝒖𝒏𝒐𝒅𝒆 is the relative displacement of the node and its neighbor in the global 

coordinate system. The contributions from the individual neighbors can be assembled into the element-

level vector of contact forces 𝒇𝒄𝒔. The next step is to calculate the inertial forces from the force balance 

equation as 

𝒇𝒊𝒏 = 𝒇𝒆𝒔 + 𝒇𝒄𝒔 + 𝒇𝒅𝒂 + 𝒇𝒆𝒙 + 𝒇𝒓𝒆 

where the vectors 𝒇𝒆𝒙 and 𝒇𝒓𝒆 represent the external forces (load) and reactions, respectively. Finally, 

we get the nodal accelerations for the next time step as 

�̈�𝒆,𝒊+𝟏 = 𝑴−𝟏𝒇𝒊𝒏 

where 𝑀 is the lumped mass matrix. 

We examine two possible approaches to obtaining the static solution with this method. First option is 

to apply the load all at once and examine a damped system until the transient dynamic part of the solution 

disappears. Alternatively, we can use the optimum load-time function proposed in the paper (Řeřicha, 
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1986), which should reach the static solution exactly at the end of loading, the error depending on the 

ratio of the natural frequency of the system and the total time of loading. 

3. Test problem – three-point bending 

As a testing example, we use a model of a beam with the length of 2 𝑚, square cross section with the side 

of 0.2 𝑚, Young’s modulus 𝐸 = 25 𝐺𝑃𝑎, Poisson’s ratio 𝜈 = 0.2 and density 𝜌 = 2500 𝑘𝑔/𝑚3. The 

beam is loaded in the center by a force of 400 𝑘𝑁.  

The difference between a CDEM solution with springs and a standard FEM solution with the 

elements sharing nodes is influenced by the stiffness of the springs – higher stiffness means lower 

difference but also limits the length of stable time step. The natural period of the beam can be deduced 

from the time-deflection curve of the undamped solution seen in Figure 2. The figure further compares 

the curves of two solutions with a load function and a solution with impulse load and a damping factor 

𝛼𝑐 = 1000. We see that the accuracy of the solution with load function increases for a longer loading 

time of double the natural period. 

 

Figure 2: Deflection-time curves for various loading strategies for a beam with the spring stiffness factor 

of 10. Length of the time step is 1.5 ∗ 10−8. 

Following is the C++ code sample of the explicit integration as a loop across single degrees of 

freedom, ready for GPU parallelization. 

 
for (int k = 1; k <= maxiter; k++) { // Loop of time steps  

loadfunc = load_function(k*dt / t_load);  

for (i = 0; i < nnodedofs*nnodes; i++) {  

// Loop of dofs - increment displacement and velocity 

  u[i] += dt*v[i] + 0.5*dt*dt*a[i];  

  v[i] += dt*a[i];  

}  

for (i = 0; i < nnodedofs*nnodes; i++) {  

// Loop of dofs - Calculate balance of forces and resulting acceleration  

  int eid = i / stiffdim; // global number of element  

  int nid = (i / nnodedofs) * nnodedofs; // number of dof 1 of this node  

  int ned = i % stiffdim; // number of the dof within element  

  int mdim = stiffdim*stiffdim; // no of elements of the stiffness matrix  

  double kc11 = Kc[0], kc21 = Kc[1], kc12 = Kc[2], kc22 = Kc[3];  

 

  // Element stiffness force:  

  double F_k_e = 0;  

  for (j = 0; j < stiffdim; j++) { 

    F_k_e += -K[eid*mdim + j*stiffdim + ned] * u[eid*stiffdim + j];  

  }  
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  // Contact stiffness force:  

  double F_k_c = 0;  

  for (j = 0; j < 2; j++) { 

    int nbr = neighbors[nid + j];  

    if (nbr != 0) { 

      double t11 = n_vects[4 * (i / nnodedofs) + 2 * j];  

      double t12 = n_vects[4 * (i / nnodedofs) + 2 * j + 1];  

      double t21 = -t12, t22 = t11;  

      double du_x = u[(nbr - 1)*nnodedofs] - u[nid];  

      double du_y = u[(nbr - 1)*nnodedofs + 1] - u[nid + 1];  

 

      if (i == nid) { // X-component  

F_k_c += du_x * (t11*(t11*kc11 + t21*kc21) + t21*(t11*kc12 + t21*kc22)) +  

        du_y * (t12*(t11*kc11 + t21*kc21) + t22*(t11*kc12 + t21*kc22));  

// T_T * Kc * T * du_g  

 

      } else { // Y-component  

F_k_c += du_x * (t11*(t12*kc11 + t22*kc21) + t21*(t12*kc12 + t22*kc22)) +  

        du_y * (t12*(t12*kc11 + t22*kc21) + t22*(t12*kc12 + t22*kc22));  

// T_T * Kc * T * du_g  

      }  

    }  

  }  

  double F_c = -C[i] * v[i]; // Damping force 

  // Reaction force - in supports, 1 means fixed dof and 0 means free dof 

  double F_r = supports[i] * (-F_k_e - F_k_c - F_c - loadfunc*load[i]);  

  z[i] = F_k_e + F_k_c + F_r + F_c;  

  a[i] = Mi[i] * (z[i] + loadfunc*load[i]);  

}  

4. Conclusions 

Two approaches to a dynamic solution of a linear static problem were compared. Although we could 

achieve an accurate solution, this was done with exclusive tuning of the calculation parameters (namely 

the time step length). Before we move on to the GPU implementation, we have yet to come up with a 

reliable method of estimating a stable time step length in order for the resulting code to be able to process 

arbitrary input. 
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