

23

rd
 International Conference

ENGINEERING MECHANICS 2017

Svratka, Czech Republic, 15 – 18 May 2017

FORMATION CONTROL OF MOBILE ROBOTS UNDER ROS

K. Besseghieur
*
, W. Kaczmarek

**
, J. Panasiuk

, P. Prusaczyk

Abstract: In this paper, a new framework is proposed for implementing the formation control laws on

nonholonomic mobile robots based on ROS (Robot Operating System). To achieve the desired formation,

mobile robots need to localize themselves within the environment, to communicate their positions to each

other and to measure their corresponding velocities. ROS provides some convenient packages that make the

formation problem easier to solve. We describe each of these packages and how they can be used to solve the

formation control problem under ROS.

Keywords: Mobile robots, Formation control, Robot Operating System (ROS).

1. Introduction

Multi-robot systems present a more robust and cheaper solution to certain tasks that are better performed

using several low-cost robots rather than single, complex ones. A multi-robot system may be required to

travel over large distances in order to reach a site related to a mission or task. While traversing the

distances, it may be desirable for the robots to move in a rigid formation with fixed inter-robot distances.

This gives rise to the formation control problem. Moreover, the latter has several potential applications

for mine sweeping, boarder patrolling and for cooperative mapping to name a few.

The formation problem has been regarded as an important problem in multi-robot systems where the

objective is to make a team of vehicles move toward and maintain a desired geometric pattern, while

maintaining a featured motion. According to the survey presented in (Guanghua et al., 2013), and the

references therein, formation structure can be divided into three strategies: the leader–follower strategy,

the behavioral and the virtual structure approaches. Several approaches have been proposed in the

literature to solve this problem. However, most of the existing literature tackle the theoretical side of the

problem mainly the controller design is considered where several control strategies are adopted to make

the formation errors converge to zero. Nevertheless, some of them have carried on real experiments to

prove the effectiveness of their proposed controller. Furthermore, multi robots systems implementation on

ROS has rarely been considered except in few works like (Muddu et al., 2015) about multi robots

coverage and (Hennes et al., 2012) about multi robot collision avoidance.

In this paper, we propose a new framework for all the mobile robots based on ROS so that real

experiments for the formation control problem can be conducted effectively. This allows all the

researches in this area to assess the performance and effectiveness of their controllers throughout the

experiments. Due to its simplicity and scalability, the leader-follower approach is considered in this

paper. However, the proposed framework can be extended so that other formation strategies can be

implemented. The remainder of the paper is organized as follows: the next section is dedicated for a small

introduction about ROS concepts and their use in the formation problem. In section 3, formation control

framework is sketched where each part of the latter is detailed and the needed ROS packages are

presented. In the last section, we conclude our work and draw some future work directions.

* Khadir Besseghieur, MS.: Faculty of Mechatronics & Aerospace, Millitary University of Technology, Kaliskiego 2, 00-908,

Warsaw, PL, besseghieurkh@hotmail.fr
** Wojciech Kaczmarek, PhD.: Faculty of Mechatronics & Aerospace, Millitary University of Technology, Kaliskiego 2, 00-

908, Warsaw, PL, wojciech.kaczmarek@wat.edu.pl
*** Jarosław Panasiuk, PhD.: Faculty of Mechatronics & Aerospace, Millitary University of Technology, Kaliskiego 2, 00-908,

Warsaw, PL, jaroslaw.panasiuk@wat.edu.pl
*** Piotr Prusaczyk, MS.: Faculty of Mechatronics & Aerospace, Millitary University of Technology, Kaliskiego 2, 00-908,

Warsaw, PL, piotr.prusaczyk @wat.edu.pl

138

 3

2. ROS background

ROS is a Linux-based, an open source software package that provides a software framework to aid in the

development of complex robotic applications (Quigley et al., 2015). It is based on the concepts of nodes,

topics, messages and services. A node is an executable program that performs computation. Nodes need

to communicate with each other to complete the whole task. The communicated data are called messages.

ROS provides an easy way for passing messages and establishing communication links between nodes,

which are running independently. They pass these messages to each other over a Topic, which is a simple

string. However, topics are asynchronous, synchronous communication is provided by services. Services

act in a call-response manner where one node requests that another node execute a one-time computation

and provide a response. For more details about ROS, the reader can refer to (Quigley et al., 2015).

We can see how these concepts help to solve the formation control problem in ROS. Nodes for instance

are responsible for launching several algorithms to control, localize the robot and to transmit the data. The

topic “/tf” is the holder of the robot’s postures. Therefore, when a node needs a robot position, it has to

subscribe to this topic. In our framework, services are essentially used in communication between robots

where the control node solicits the communication node to transmit postures to another robot.

The presented formation implementation relies on several operational assumptions to narrow the

implementation goal to a specific scope which is about testing the formation control laws with real

experiments. First, it is assumed an occupancy grid representation of the static map is available to all

robots. This removes the requirement for multi-robot SLAM and map merging, which are outside the

scope of this work. Second, each robot knows its initial position and posesses the required sensors in

order to maintain an accurate estimation of its pose within the two dimensional map using the navigation

stack. A wireless communication network is assumed to be available over the entire coverage region.

Our test bench includes “Turtlebot” robots equipped with the Kinect camera sensor and with embedded

laptops. The robots communicate over an 802.11n WIFI network (Fig. 1).

WIFI
network

Kinect
Workstation
Linux + ROS

WIFI
network

�Turtlebot robot - Leader �Turtlebot robot - Follower

 A general view of the system. Fig. 1:

3. Formation control framework on ROS

To build a robust formation control framework on ROS, we need before to know how each robot

contributes to realize the whole formation. We decided to set up our framework according to what is

needed in the leader-follower approach. Note that this framework can be extended to implement different

formation control strategies.

In the leader-follower approach, each robot takes another neighboring robot as a leader to determine its

motion. The leader robot moves along predefined trajectory while the follower robots keep track of the

leader robot and maintain desired distance and bearing angle.

Most of the control laws proposed in the literature show that the leader’s relative coordinates and

velocities are needed in the control laws implemented on the followers. Therefore, the complete multi-

robot formation control strategy can be divided into three phases that each robot must be able to carry out

on its own. Each robot must be able to:

 Localize itself within the map.

 Communicate data with other robots. The communication direction is from the leader to its

followers.

139

 4

 Execute the implemented formation control laws. Only for the followers. Note that the leader can

be directly controlled from the workstation keyboard using the “Teleoperation” ROS package.

In addition to the basic nodes needed for running the robot, three additional nodes are indispensable for

controlling the robots to achieve formation. AMCL node for localization, Ad Hoc Communication node

for data transmission and the control node that executes the control algorithm. The nodes are running

simultaneously and thus they have to communicate to each other through ROS topics or ROS services as

depicted in fig.2. Note that on each robot, all the nodes are executed under a specific namespace for the

robot. The ROS parameter ‘tf_prefix’ is exclusive for each robot as well.

(2)

Leader

AMCL node

Ad_hoc
communication node

Control node

(1)

Follower

AMCL node

Ad_hoc
communication node

Control node

(3) �T
f�
 t

o
p

ic

�T
f�
 t

o
p

ic

 Formation control framework. Fig. 2:

3.1. Localization

The ROS navigation stack is used to provide the localization of the robot. The Localization method uses

the Adaptive Monte-Carlo Localization (AMCL) approach presented in (Hennes et al., 2012), it is based

on a weighted particle system in which each particle represents an estimated pose of the robot and

consists of two phases of calculation: the prediction and update phases. AMCL combines the onboard

encoders’ measurements and the data provided by the Kinect sensor to provide an accurate estimation of

the robot position. The AMCL node publishes the robot’s postures into the ‘tf’ topic.

3.2. Data communication

Several ROS packages have been proposed to transmit data between several machines based on ROS. The

multimaster_fkie package (Tiderko et al., 2016) allows the discovery and synchronization of robots as

well as unicast and multicast transmissions based on UDP where two additional nodes need to be run.

Master_discovery node connects to its local master and broadcasts the time stamp of the last change to the

network and master_sync node connects to all known master_discovery nodes then it registers or

unregisters the remotely available topics and services with the local ROS master. SocRob Multicast

package is proposed in (Reis et al., 2013) based on Reconfigurable and Adaptive TDMA (RA-TDMA)

communication protocol. The Ad Hoc Communication package considered in (Ander et al., 2014) is

preferred in our framework where an Ad hoc On-Demand Distance Vector (AODV) for unicast and

Multicast transmission is implemented. It uses automatic repeat request (ARQ) on data link and transport

layers for unicast and multicast allowing reliable transmissions. Comparing with the multimaster_fkie

package, the ad_hoc communication package provides more reliable transmission of data and the

communication is only established on demand.

The communication between robots is mainly used for transmitting the leader’s postures and velocities to

its followers. These data are essential for controlling the follower to keep the desired separation and

bearing with the leader. However, the two control nodes do not communicate directly, they utilize the

intermediate Ad Hoc Communication node as depicted in Fig. 2. (1) represents a service call which

includes the hostnames of the sender and the recipient robots, data to be transmitted and the topic where

the data will be published at the destination. The Ad Hoc Communication package wraps the data into an

extended MAC frame and transmits the frame using a raw socket (2). When the data has successfully

been received at the destination, it will be published in the predefined topic. Note that, a custom ROS msg

file that includes the variables definitions for the data to be transmitted must be defined as well as a new

ROS srv file, which holds that custom msg file, is necessary in the service call for data transmission.

140

 5

3.3. The control node

The control nodes are considered as the main part in the robots control. However, the algorithms differ

when it comes to a leader or a follower robot control. As sketched in Fig. 3, after the initialization phase,

the program goes into the control loop. The nodes then listen to their corresponding ‘/tf’ topics and

subscribe to the topic where the robot’s velocities are being published as well as subscribing to the topics

published by the ad hoc communication node to get the leader’s postures and the workstation order. A test

is held where only a received character from the workstation interrupts an endless wait loop. This order is

transmitted using the same package Ad Hoc Communication. After receiving the order, each follower

executes the implemented control laws, which are based on nonlinear system control theory. The obtained

velocities are then published to the corresponding velocity command topics. Whereas for the leader, it is

controlled from the workstation using the ‘Teleoperation’ ROS package.

T

Follower control node

Main program Initialisation

Listenning

Test

Control laws

F

Publishing velocities

T

Leader control node

Main program Initialisation

Listenning

Test

Data transmision

F

 Control nodes algorithms. Fig. 3:

4. Conclusion

In this work, a ROS framework for implementing formation control algorithms on mobile robots based on

ROS is designed that can be exploited by researches in this area to assess their control algorithms

performances. The proposed framework is divided into three phases where the localization and

communication phases are functionalities provided by existing ROS packages whereas the control phase

indicates the custom ROS node. The framework has been tested on our test-bench, the communication is

reliable but the localization can be more accurate, this will be tackled in our future work by improving the

localization algorithm or employing better sensors than the Kinect camera where the Hokuyo Lidar is

considered to be a better alternative. Future works include extending this framework for other formation

control strategies than the leader-follower approach.

Acknowledgement

My acknowledgements are directed to the co-authors of this paper for providing me with the necessary

equipment to carry on this research and to the anonymous reviewers of this paper.

References

Andre, T., Neuhold, D. and Bettstetter, C. (2014) Coordinated multi-robot exploration: Out of the box packages for

ROS. In Globecom Workshops (GC Wkshps), pp. 1457-1462, IEEE.

Guanghua, W., Deyi, L., Wenyan, G. and Peng, J. (2013) Study on formation control of multi-robot systems.

In Intelligent System Design and Engineering Applications, 2013 3 rd Int. Conf on pp. 1335-1339, IEEE.

Hennes, D., Claes, D., Meeussen, W. and Tuyls, K. (2012) Multi-robot collision avoidance with localization

uncertainty. In Proc. 11th Int. Conf. on Autonomous Agents and Multiagent Systems-Volume 1, pp. 147-154.

Muddu, R.S.D., Wu, D. and Wu, L. (2015) A frontier based multi-robot approach for coverage of unknown

environments. In Robotics and Biomimetics (ROBIO), 2015 IEEE Int. Conf on pp. 72-77, IEEE.

Quigley M., Gerky B. and Smart W.D. (2015) Programming Robots with ROS, a Practical Introduction to the Robot

Operating System, First. O’Reilly Media, Inc.

Reis, J.C., Lima, P.U. and Garcia, J. (2013) Efficient distributed communications for multi-robot systems. In Robot

Soccer World Cup, pp. 280-291, Springer Berlin Heidelberg.

Tiderko, A., Hoeller, F. and Röhling, T. (2016) The ROS Multimaster Extension for Simplified Deployment of

Multi-Robot Systems, chapter in Robot Operating System (ROS) Volume 625 of the series Studies in

Computational Intelligence pp. 629-650.

141

