
  

 

23
rd

 International Conference  

ENGINEERING MECHANICS 2017 

Svratka, Czech Republic, 15 – 18 May 2017 

Fig. 1: Scheme of perturbation 

vector and its derivative. 
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Abstract: In this article we show the new simple and effective method of Lyapunov Exponents (LE) 

estimation, based on the perturbation vector and its derivative dot product analysis. We show that presented 

method can be applied in different aspects of the nonlinear systems control. Moreover, our method is based 

on very simple computations, involving only basic mathematical operations, such as summing, subtracting, 

multiplying, dividing, thus it can be easier to apply than other methods. As the actual Lyapunov exponent 

value is calculated before the next integration step it does not involve an integration errors. 
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1. Introduction 

Controlling system dynamics with use of Lyapunov Exponents (LE) is employed in many different areas 

of the scientific research and is used in controlling dynamics of increasingly complex dynamical systems. 

LE are employed in scientific research of materials (Aniszewska, 2008), electric power systems 

(Wadduwage, 2013), non-continuous systems (Serweta, 2015), systems with time delay (Stefański, 2005), 

aerodynamics (Hu, 2012), time series analysis (Yang, 2012), optimal control (Zhu, 2004), chaotic 

encryption and secure communication (Chunbiao, 2012), multi-objective optimization (Fraga, 2014), 

parametric oscillations and fluctuating parameters (Stefanski, 2008), neuronal models investigations 

(Soriano, 2012). Thus, there is still need to elaborate fast and simple methods of LE calculation. The new 

method of LE estimation is presented in this paper.  

2. Method 

Generally presented method bases on the analysis of the disturbance 

changes dz(t) in the direction of the general disturbance vector z(t) 

(Fig. 1) and was discussed in (Dabrowski, 2012, 2012, 2014). 

Fig. 1 shows two perturbations of z in the phase space. Assume that z 

for the dynamical state x(t) evolves according to linear 

transformation assigned U(x(t)). 

Let 𝐳∗ be the component of z in the direction of eigenvector 𝒘∗ of 

linear transformation U(x(t)). In that case: 

 
𝑑𝐳∗

𝑑𝑡
= 𝐔(𝐱(𝑡))𝐳∗ = 𝝀∗𝐳∗ (1) 

where 𝝀∗ is the eigenvalue of U(x(t)), corresponding to eigenvector 

𝒘∗. After transformation of (1) to scalar form one can obtain: 

  |𝑑𝐳∗|

|𝐳∗|
= 𝝀∗𝑑𝑡 (2) 
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Integration of (2) yields:  

 |𝒛∗| = |𝐳0
∗|𝑒𝝀∗𝑡 (3) 

where 𝐳0
∗ is the initial state of 𝐳∗. Equation (3) describes evolution of the disturbance 𝐳∗ in the direction of 

𝒘∗. One can notice that the formula (3) describes an averaged evolution of perturbation length. This 

shows a connection between largest eigenvalue of U(x(t)) and LLE of the considered dynamical system. 

Such connection stands the base of our new method and can be utilized further in estimation of LE 

spectrum. 

3. Method applications 

This section considers application of the method in estimation of the Lyapunov exponents in analysis of 

different types of dynamical systems. In the first case (Figs. 2a, 2b) perturbation z(t) was derived from the 

linearized equations and Largest Lyapunov exponent (LLE) was analysed. Mathematical model of the 

system is as follows: 

 �̈� + 𝛽�̇� + 𝛼𝑥3 = 𝑞 cos(𝜂𝑡) �̈� + 𝛽�̇� + 𝛼𝑧2𝑥 = 0 (4) 

Application of the method in the bifurcational analysis can be seen in (Fig. 2a). One can see different 

types of system dynamics and values of LLE confirming chaotic, periodic dynamics existence. Zero LLE 

values which determine period doubling bifurcation points are visible as well. Comparison of the results 

with the Stefanski method (Stefanski, 2005) is shown in (Fig. 2b).  

 

 

 

 

Fig. 2: Bifurcation diagrams for linearized equations of the perturbation analysis. 

The next case considers studies of Duffing system dynamics where perturbation z(t) was derived from the 

differences of actual dynamical states of two identical systems with different initial states. 

    

b) a) 

a) b) 

Fig. 3: Bifurcation diagrams for two systems perturbation analysis. 
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Similarly to the previous case application of the method in the bifurcational analysis has been presented. 

It can be seen in (Fig. 3a). One can see different types of the system dynamics and values of LLE 

confirming chaotic, periodic dynamics existence. Zero LLE values which determine period doubling 

bifurcation points are visible as well. Comparison of the results with the Stefanski method is shown in 

(Fig. 3b). 

Application of the method in dynamical systems with desired controlled behaviour 

 

Fig. 4: Scheme of the control system. 

In this section we investigate application of the method in analysis of dynamics of the controlled inverted 

pendulum (Fig. 5a) and optimization of its control systems parameters. Our method is applied to estimate 

the Largest Lyapunov Exponent (LLE) as a criterion for control performance assessment (CPA) in a 

simulated control system. As any control system can be analyzed as a dynamic system, disturbance acting 

on the system in time 𝑡 = 0 can be treated as a change of initial conditions of the dynamic system. Thus 

behaviour of the error of regulation contains all the data necessary to the estimation of the Lyapunov 

exponents of the system. Scheme of the control system is presented in (Fig. 4).  

  

Fig. 5: a) Inverted pendulum; b) its bifurcational analysis. 

During the experiment action of the control system was tested for different coefficients of PID regulator 

(𝑘𝑝, 𝑇𝐼, 𝑇𝐷). For each combination of PID coefficients values of LLE were calculated. Based on that 

parameters ranges for each pendulum three dimensional bifurcational diagrams were obtained (Fig. 5b). It  

shows dependence of the LLE on the regulator parameters, and map of the parameters showing ranges of 

the LLE values in different colours. These investigations allowed us to choose optimal values of the 

regulator with taking into account the range of its best effectiveness. Finally values 𝑘𝑝, 𝑇𝐼 and 𝑇𝐷 were 

chosen for the lowest LLE values. Time series of the system regulation error e(t) for optimized 

parameters are presented in (Fig. 6). One can see fast decay of the oscillations proving big efficiency of 

optimized regulators. 

 

Fig. 6: Time series of the system regulation error e(t). 

a) b) 
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4.  Conclusions 

We have investigated the new method of LE estimation. We have presented theoretical description 

showing mathematical simplicity of the method and simplified background of the basic idea. We have 

introduced proofs of our method effectiveness based on results of simulations for different types of 

nonlinear dynamical systems. The next step of development of the method can be considered in 

estimation of LE from a real time series, systems with discontinuities, with time delay and others. It can 

be also extended onto multidimensional control. 
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