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Abstract: The guide arrangement is an element of the self-propelled anti-aircraft missile set. The 

disturbance which is transferred onto the assembly is generated during the motion of the short-range target 

homing missiles along the guide. The aim of the paper is to discuss how the input generated within the 

assembly affects the motion of the guide arrangement. 
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1. Introduction 

The key role in the functioning of the self-propelled anti-aircraft missile set belongs to the arrangement of 

guides, Fig. 1. Before and at the initial stage of the launching the missile contacts the guide via two 

directing rings. The missiles moves along the guide simultaneously revolving around the longitudinal 

axis. At this stage the missile has two points of contact with the launcher guide. These points are 

represented by two supports. The placement of the directing rings on the missile body determine the 

location of the supports. The structure of the arrangement results from the accepted assumption and 

determines missile mobility. The two-point support is binding until the instant the first directing ring of 

the missile abandons the guide. From that moment the kinematic pair: guide-missile, previously a set with 

a two-degree freedom, becomes a set with a three-degree freedom of movement. The structure of the 

arrangement changes as the missile moves along the guide. The support is reduced to one point. In the 

general case the support leads to the lack of co-linearity of the points located on the longitudinal axis of 

the missile compared to the points located on the longitudinal axis of the guide. This particular property is 

characteristic of the arrangement: guide-missile with a three-degree freedom. The fact that the 

longitudinal axis of the missile and the longitudinal axis of the guide do not overlap all the time is typical 

of the structure. 

 

Fig. 1: Self-propelled anti-aircraft missile set. 
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The guide arrangement consists of two guides located one under the other and links the platform and the 

missile. It is necessary for the guide arrangement, with maximum efficiency, to insulate the missile 

against undesirable platform vibrations and disturbance generated by launching missiles as well as 

providing conditions for proper localization of the target by missiles (Dziopa, 2015). 

2. Physical model 

The model of the self-propelled anti-aircraft missile assembly consists of five elements (Dziopa, et al 

2015). These elements are: a combat vehicle, an operator seated in the chair, a launcher and two missiles 

and a target. The launcher, which consists of a platform and a set of guides, is installed on the vehicle, 

Fig. 2. 

 
Fig. 2: Physical model of the self-propelled anti-aircraft missile set. 

The launcher does not change its configuration after the guide arrangement has been set into the position 

of intercepting the target (Dziopa, 2013). At this instant the guide arrangement is turned towards the 

platform in accordance with the elevator angle: 0pw
 . The 0pw

  angle is the initial angle of inclination of 

the set of guides. The guide arrangement is a perfectly rigid body with mass: pw
m  and the moment of 

inertia: pwz
I  (Chatys, 2013). The object is placed on the platform with the use of two passive elastic-

damping elements with linear parameters 
21wk  and 

21wc  respectively and 
22w

k  and 
22wc . Two independent 

generalized coordinates were used to determine the position of the guide arrangement at any moment: 

 pw
y  - vertical relocation of the rotation centre opw

0  of the guide arrangement, 

 pw
  - angle of rotation of the guide arrangement around the pwopw

z0  axis. 

3. Mathematical model 

The studied arrangement is described by differential equations with ordinary derivatives represented by 

twenty-four independent generalized coordinates (Baranowski et al., 2016). On account of the limited 
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number of pages and a lengthy notation of the equations, only the dependences describing the guide 

arrangement motion will be presented. 

The equations representing the motion of the guide arrangement: 
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where: 
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4. Numerical simulation 

The exemplary courses of linear acceleration variation of the guide arrangement are presented in Figs. 3, 

4 (two-degree freedom) and 5, 6 (three-degree freedom). The generated disturbance results from the drive 
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of the assembly along a rough road at the speed of  km/h30  and launching two missiles (Gapiński, 

2014). The characteristics for three cases of inclination of the guide arrangement are compared. It is 

possible to determine such instants of time which represent physical phenomena of mechanical reaction 

nature in the course of three seconds of the assembly operation (Koruba, 2013 and Stefański, 2012). 

   
 Fig. 3: Take-off missile 1. Fig. 4: Take-off missile 2. 

   
 Fig. 5: Take-off missile 1. Fig. 6: Take-off missile 2. 

5. Conclusions 

The guide arrangement suffers from a distinct induction during the movement of the assembly along an 

uneven road and launching both missiles. The dynamic characteristic of the guide arrangement and their 

inclination angle determine the level of disturbance which affects the launching missile. A distinct change 

in the course of alteration of physical quantities describing the motion of the guide arrangement, e.g. the 

abrupt change of linear acceleration, occurs when the structure of the assembly or its mass is changed.  
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