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Abstract: The DKT plate element and the plane element with rotational degrees of freedom are employed to 

define a shell element. Moreover, layered model is taken into account to include possible nonlinear 

behaviour across a cross-section of a shell. The paper explains principles of layered model and interaction 

between the elements used. The model and the shell element are implemented into the SIFEL solver using 

finite element method. 
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1. Introduction 

When the topic of shell structures is concerned, nonlinear behaviour of a material is often desirable to be 

taken into consideration. Although this subject can be resolved by using 3D elements together with a 

nonlinear material model, with respect to the planar character of shell structures, it is preferred to use 2D 

modelling tools to find a solution to the problem. In this regard, a possible way to involve nonlinearity in 

a calculation is by adding layered model to the process (Hu and Schnobrich, 1991). 

The authors have continued to explore the topic of layered model within the SIFEL environment (Krejčí, 

Koudelka and Kruis, 2011) and are now extending the work from previous years focused on the 

application of layered model solely on plate structures to the application on shell elements. 

For purpose of this application, a triangle shell element was created by combining two separate elements 

– the DKT plate element and the triangle plane element with rotational degrees of freedom. The idea 

behind the shell element was to use two, in SIFEL already developed, separate elements without any 

changes and to form an interaction between them so they could simulate the shell behaviour. Although the 

idea itself seems very simple, several subsidiary issues has emerged, especially with regard to integration 

points. 

The first part of the paper is dedicated to basic description of layered model. Principles of the DKT and 

the rotational plane element are then explained followed by the examination of the elements’ interaction. 

At the end, several issues that have been dealt with are mentioned in detail. 

2. Layered model 

When describing deformation of a shell structure, the following vectors can be adopted 

    T
xyyx

T

xyyx  ,,,,, ,0,0,0  κε0 , (1) 

where 𝜺𝟎 is the vector of middle plane strain and 𝜿 represents the vector of curvatures. If the statement, 

that straight lines normal to the middle plane remain straight and normal to the middle plane after 

deformation, is accepted, the development of deformation 𝜺 =  {𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦}
𝑇

 across the z-coordinate can 

be expressed as follows 
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   κεε zz  0 . (2) 

When layered model is employed, a shell structure is decomposed into small layers (Fig. 1) and Eq. 2 can 

be rewritten into the following form 

 κεε jj z 0  (3) 

where 𝜺𝑗 represents strain components of the j-th layer and zj is the distance of the j-th layer from the 

middle plane. Each layer is considered to be in the plane stress state and by using the appropriate stiffness 

matrix Dj, stress components of the j-th layer 𝝈𝑗 can be obtained 

 jjj εDσ   (4) 

The integration of the stress components over the layer thickness yields resultant forces 

    T
xyyx

T

xyyx mmmnnn ,,,,,  mn  (5) 

that are obtained as the summation of contributions from all layers. The single contribution from the j-th 

layer to the stress resultant forces is formulated as follows 

 jjjjjjj tzt σmσn  ,  (6) 

And by combining all contributions and substituting Eq. 3 and Eq. 4 into Eq. 5, the final stress resultant 

forces are attained 
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It is important to notice here that layered model enables to use various stiffness matrices for layers. For 

even distribution of stiffness across a cross-section, off-diagonal members of the matrix in Eq. 7 are equal 

to zero. Only when stiffness is distributed unequally, off-diagonal members are take into account. 

 

Fig. 1: Decomposition of a structure into layers. 

3. Elements used and their interaction 

A general shell element holds 6 degrees of freedom at each node – 3 displacements u, v, w and 3 rotations 

𝜑𝑥 , 𝜑𝑦, 𝜑𝑧. In the case of layered model, it is assumed that the triangle shell element is assembled from 

the DKT element and the plane element with rotational degrees of freedom (Jirásek and Bažant, 2002), 

(Bittnar and Šejnoha, 1996). 

In this interaction, the DKT element is intended to represent plate behaviour of a shell and the distribution 

of deflection w and rotations 𝜑𝑥 , 𝜑𝑦 is from the element obtained. The plane element is employed to 

calculate the remaining displacements u, v and the rotation 𝜑𝑧. In addition, the curvatures 𝜅𝑥, 𝜅𝑦, 𝜅𝑥𝑦 are 

computed within the DKT element and the strains 𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦 are received from the plane element, which 

are then used, with regard to Eq. 1, as the middle plane strains. 

The class of the shell element (primary element) is in SIFEL created in the form of a coordinator between 

the plate element and the plane element (secondary elements). The idea is to take already developed plate 

and plane elements and use them in the algorithm as individual units without any changes. The work done 

by the shell element can be summarized into the following points: 

z = z
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 assembles the stiffness matrix 

 transforms values from global to local character and vice versa 

 collects data from the core calculation and redistributes them into the secondary elements and 

vice versa 

 gathers calculation data from the secondary elements and generate the final output 

Although these are fairly obvious procedures, the authors would like to introduce some difficulties that 

have come out through the implementation of the shell element. 

4. Stiffness matrix 

The stiffness matrix of an element can be expressed in finite element method as 

 dV
V

T
BDBK   (8) 

where B represents the matrix of shape functions derivations and D is the matrix of material stiffness. Let 

us focus only on the expression after the integration mark in Eq. 8. While considering a shell element 

assembled by one plate element and one plane element, it can be stated that 
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where BN  is the matrix of shape functions derivations for a plane element and BM for a plate element. DN 

then represents the material stiffness matrix of a plane element and DM of a plate element. The off-

diagonal members DNM and DMN can be interpreted as a relation between the two elements. If linear 

elasticity is considered, the off-diagonal members are neglected and Eq. 9 can be, after multiplication, 

rewritten into the following form 
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which is exactly as a plate and a plane element are simply put together. However, when some form of 

nonlinearity across a cross-section is employed, the off-diagonal members cannot be ignored and Eq. 9 is 

possible to modify into 
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To fit this idea on layered model, the material stiffness matrices DN, DM, DNM and DMN can be interpreted 

in regards of Eq. 7 as follows 

    jjjMNNMjjjMjjN tztzt DDDDDDD ;; 2
. (12) 

After the numerical integration, it is possible to achieve the stiffness matrix of the shell element that is 

created by a plate and a plane element and equipped with layered model. 

5. Integration points and nonlinear calculation 

When performing a calculation on integration points, it is necessary to be aware of the fact that the chosen 

plane element includes more integration points than the DKT plate element. Although both elements use 

the 3-point integration system, the plane element performs the integration twice therefore possesses two 

sets of the same 3 integration points. Given that layered model determines stress resultant forces on every 

integration point and at the same time uses both middle plane strains and curvatures, the so-called 

artificial integration points are established to deal with the issue. These integration points collect both 

strain vectors and perform calculation of stress resultant forces. The results are then distributed to the 

appropriate integration points on particular elements. The artificial integration points hold only the 
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composition of an integration point but they are not used for the integration of nodal forces involved in 

the equilibrium equations. They just perform the calculation of stress resultant forces and further 

generated data inside are eventually used for creating the output. It should be also noted that the artificial 

points are created in respect of the 3-point integration system. Instead of performing calculation of stress 

resultant forces 3 times (once on the DKT element and twice on the plane element), it is done only once 

and results are spread over the remaining integration points. 

As mentioned at the beginning, adopting layered model can be a suitable way to include nonlinearity. 

When a shell structure is imaginarily divided into layers, each layer is assigned its own strain components 

according to Eq. 3. While the plane stress state is considered, any material model can be attached to every 

layer, thus creating space for involving nonlinearity and at the same time keeping the problem in 2D. As 

stated above, all calculations are done on the artificial integration points where all nonlinear parameters 

for layers are stored and printed out to the output in case of a successful calculation. 

As an example of a nonlinear calculation using layered model, the results from a concrete rectangular slab 

considering plastic yielding in layers are shown in Fig. 2. The slab is supported simply alongside the 

upper and the side edges while the lower edge is fixed. The slab is loaded uniformly and the values of 

plastic multiplier γ, that indicate the amount of plastic yielding at the area, can be observed from Fig. 2. 

 

 

Fig. 2: Development of plastic multiplier γ in a rectangular slab [-]. 

6.  Conclusions  

The application of layered model to the shell element assembled from the DKT plate element and the 

plane element with rotational degrees of freedom has been presented in the paper. Difficulties and 

principles regarding the implementation of layered model and the shell element itself has been mentioned.  
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