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Abstract: The Lyapunov exponents serve as numerical characteristics of dynamical systems, which measure 

possible divergence of nearby trajectories of the solution. In this way they express dependence of the 

dynamical system on initial conditions. However, the value of Lyapunov exponents consists in their ability  

to characterise deterministic chaos. The limiting process intrinsic in the definition of Lyapunov exponents, 

unfortunately, seriously complicates their computation. The short paper presents an overview of difficulties 

in numerical approaches to enumeration of Lyapunov exponents or at least the largest one and shows  

a promising method based on QR decomposition of the system Jacobian. 
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1. Introduction 

The collocation “deterministic chaos” seems to be a contradiction in itself. However, in the theory of 

dynamical systems it refers to systems whose results are reproducible but (almost) unpredictable. No 

mathematical definition of the term deterministic chaos is universally accepted yet and chaos is usually 

characterised by its properties. The reasonably simple working definition due to Strogatz (2000) states: 

Chaos is aperiodic long-term behaviour in a deterministic system that exhibits sensitive dependence on 

initial conditions. The Lyapunov exponents (LE) provide a numerical measure of the last condition of the 

Strogatz’s definition: sensitivity on initial conditions. Thus, a strictly positive LE in dissipative systems 

can be, under additional conditions, regarded as an indicator of deterministic chaos (Politi 2013, Dieci 

2011). For other examples of their applications see, e.g., (Ott 1993). It is worth noting that in most 

applications it is sufficient to approximate only a subset of LE, e.g., the largest one.  

Consider the 𝑚 dimensional non-linear differential system  

 ẋ = f(x) ,   x(0) = x0 .  (1)  

Let the right-hand side 𝑓 is a smooth function and solution 𝑥𝑥0
 of (1) exists for given initial condition 𝑥0 

and 𝑡 ≥ 0. Using two terms of Taylor expansion of 𝑓(𝑥) can be easily derived that the infinitesimal 

perturbations 𝛿 to a trajectory 𝑥𝑥0
are described by the linearized equation 

 𝛿̇ = 𝐉𝑓(𝑥𝑥0
)δ ,  (2)  

where 𝐉𝑓(𝑥) be the Jacobian of the right-hand side 𝑓 in (1). Eq. (2) is linear ordinary differential equation 

and its stability can be examined using traditional means. In dynamical systems, evolution of size of the 

perturbation 𝛿 is governed by the relation 

 ‖𝛿(𝑡)‖ = eλ1𝑡‖𝛿(0)‖ ,  (3)  

where 𝜆1 is the largest LE. The relation (3) is usually supposed to serve as a formula for calculation of 𝜆1: 

 λ1 = lim𝑡→∞
1

𝑡
ln‖𝛿(𝑡)‖ ,  (4)  

Regarding the whole spectrum of LE, the exact definition is more complicated. Dieci et al. (2011) define 

upper and lower LE as follows. Let 𝐴(𝑡) = 𝐉𝑓(𝑥𝑥0
) and define numbers 𝜇𝑖 , 𝜈𝑖, 𝑖 = 1, … , 𝑚 such that 
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  𝜇𝑖 = lim sup𝑡→∞
1

𝑡
ln‖𝑌(𝑡)𝑒𝑖‖ ,   𝜈𝑖 = lim sup𝑡→∞

1

𝑡
ln‖𝑍(𝑡)𝑒𝑖‖, (5)  

where 𝑚 × 𝑚 matrices 𝑌(𝑡), 𝑍(𝑡) are the solutions of 

  𝑌̇(𝑡) = 𝐴(𝑡)𝑌(𝑡), 𝑌(0) = 𝑌0,    𝑍̇(𝑡) = −𝐴(𝑡)T𝑍(𝑡), 𝑍(0) = 𝑍0 ,    𝑌0, 𝑍0 ∈ ℝ𝑚×𝑚 regular (6) 

and 𝑒𝑖 is the i-th standard unit vector. Such 𝜇𝑖 , 𝜈𝑖, which minimize ∑ 𝜇𝑖
𝑚
𝑖=1 , ∑ 𝜈𝑖

𝑚
𝑖=1  for all possible initial 

conditions 𝑌0, 𝑍0 are called upper or lower Lyapunov exponent and denoted 𝜆𝑖
𝑢, 𝜆𝑖

𝑙, respectively. If 

𝜆𝑖
𝑢, = 𝜆𝑖

𝑙 = 𝜆𝑖 for all 𝑖 the system is called regular. Politi (2013) uses slightly different yet equivalent 

definition. Vast majority of publications assumes regularity of the underlying system. This assumption, 

e.g., enables validity of the basic computational rule (4). Also the present work will follow this practice. 

2. Numerical methods 

Numerical approximation of LE is often 

introduced using discrete maps instead of 

continuous dynamical system. The discretized 

continuous system can be usually regarded as a 

discrete map; however, such an approach 

imposes restrictions on discretization 

parameters and, moreover, changes properties 

of the original dynamical system.  

Most of the introductory texts start and end 

with estimation of the largest Lyapunov 

exponent 𝜆1using the limiting approach similar 

to Eq. (4). Danger of this simple approach is 

illustrated in Fig. 1, inspired by Strogatz 

(2000). It shows typical evolution of separation 

of two adjacent trajectories, ‖𝛿0‖ = 10−3 for 

the Lorenz system 𝜎 = 10, 𝑏 = 8/3, 𝑟 = 28. The correct value 𝜆1 ≈ 0.9 is well approximated by the 

slope the line ℓ. Fig. 1 points out two weaknesses of the approach (4). For 𝑡 < 10 is the mean slope of 
‖𝛿‖ shown as ℓ1 and for 𝑡 > 20 as ℓ2. The line ℓ1 reflects influence of initial conditions, for different 

initial conditions can be either almost horizontal or disappear at all. It can be eliminated in the real 

computation by selecting the initial condition on the attractor. The plateau ℓ2, on the other hand, appears 

when separation of the trajectories is comparable to the size of the attractor and cannot be eliminated. 

Fig. 1 shows that algorithmization of the method based on (4) could be a cumbersome task. 

Besides the initial condition, other factors influencing estimation of the largest LE can be: discretization 

parameter of the differential solver, size of initial separation of trajectories ‖𝛿0‖ and number of averaged 

trials for random initial perturbations of size ‖𝛿0‖. The discretization parameter or choice of (stable!) 

integration method does not seem to influence results too much, the procedure works well even with 

adaptive methods provided the samples of individual trajectories match. On the other hand, size of initial 

perturbation influences results significantly. From Tab. 1 can be seen that too large 𝛿0 results in an 

underestimated value of 𝜆1. The second row of the table shows values determined from a single random 

perturbation and rows 3 and 4 list average values and variances computed from 100 different initial 

perturbations of size ‖𝛿0‖, respectively. 

Tab. 1: Influence of size of initial perturbation on the estimation of the largest LE. 

 ‖𝜹𝟎 ‖ 0.1 0.01 0.001 0.0001 0.00001 10
-6

 

single 𝜆1 0.48004 0.68527 0.72202 0.96167 0.93266 0.95062 

mean 𝜆1 0.27817 0.56540 0.81150 0.93027 0.94803 0.94875 

variance 𝜆1 0.02018 0.01525 0.00700 0.00050 0.00053 0.00004 

The same approach can be practically used when several or all LE are to be determined. The procedure 

has to be augmented by regular reorthogonalization, in the similar manner as in the well-known subspace 

iteration method for computing eigenvalues. A large variety of methods is based this approach, mainly 

based on theoretical and practical papers by Galgani et al. (1980) and Benettin et al. (1980). Example of a 

 

Fig. 1: Numerical approximation of largest  

LE of the Lorenz attractor. 
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good practical implementation is available due 

to Sandri (1996). When using this approach, 

the computation can easily exploit parallel 

architecture of current computers (Tange 

2011). 

The approach based on Eq. (4) can be also used 

in the case when there are available only the 

experimental or other discrete data. The simple 

implementation accompanying paper (Wolf 

1985) or the monograph (Kantz and Schreiber 

2004) provide basic functionality only and 

cannot distinguish chaotic and stochastic data. 

The more advanced procedure described by 

Rosenstein et al. (1993) is similarly based on 

identifying of different yet similar sections in 

the experimental data, which are used subsequently to simulate separating of close trajectories. Although 

the algorithm is relatively simple, its application depends on several more or less heuristic parameters. 

These are namely embedded dimension ℳ, reconstruction delay 𝒥 and number of data available 𝒩. 

While the parameter 𝒩 is usually fixed, determination of optimal values for ℳ and 𝒥 can be tricky, for 

discussion and hints see the cited paper.  

The example results for the 𝑥-coordinate of the Lorenz system from the previous page for three different 

values of ℳ are shown in Fig. 2. Data were obtained using a fixed step fourth order RK integrator with 

𝛥𝑡 = 0.01 and delay was set to 𝒥 = 18 =̂ 0.18s. The solid curves show time dependency of the averaged 

values of ln‖𝛿‖. As in Fig. 1, the curves for ℳ = 2,3 exhibit linear growth for ca. 1 < 𝑡 < 3.5, giving a 

good estimate of 𝜆1. In accordance with Rosenstein’s results the case ℳ = 1 gave no usefull result. 

However, presence of false linear slope ℓ1 for both ℳ = 2, 3 lowers credibility of obtained results. 

The recent and advanced approaches to stability assessment are based on the idea of maintaining the 

orthogonal transformation of the perturbation coordinates during integration, e.g., Náprstek (2014). 

Lyapunov (1992) showed in his thesis that for regular systems the LE may be extracted as the limit of the 

time average of the diagonal elements of the upper triangular coefficient matrix. If the coefficient matrix 

(denoted 𝑩) in the (regular) system (2) is triangular, then its LE can be determined as 

 𝜆𝑖 = lim𝑡→∞
1

𝑡
∫ 𝐵𝑖𝑖(𝑠) d𝑠

𝑡

0
 . (7)  

The main idea of the work presented by Dieci et al. (2011) is based on transformation of the general 

Jacobian 𝐉𝑓(𝑥𝑥0
) to an upper triangular matrix 𝑩 using a time-dependent orthogonal QR transformation. 

The algorithms developed by Dieci et al. offer computation of several or all LE of a (not necessarily 

regular) system. The authors claim that their packages LESLIS, LESLIL, LESNLS and LESNLL are 

mature enough to provide a scientific community with a mean for reliable, yet cautious, estimation of LE. 

All methods implemented in the package start from a full rank initial condition 𝑌0  ∈ ℝ𝑛×𝑚, where 

𝑛 ≤ 𝑚 is a number of LE to be computed. It is advised to select the 𝑌0 at random, this is needed to 

guarantee that all possible growth behaviour is represented in the columns of 𝑌(𝑡) and that the n most 

dominant exponents will emerge. In each step 𝑡𝑖 → 𝑡𝑖+1, the methods perform (i) integration, (ii) 

orthogonalization, (iii) update of LE estimates. This division of the general procedure is simple and 

allows a free hand in implementation of individual tasks. The package offers several special integration 

schemes, including those which preserve orthogonality. Unlike the traditional methods, this package uses 

adaptive steplength based on local error estimate for both increased efficiency and accuracy. The time-

variable orthogonalization is implemented as either discrete or continuous QR factorization. The both 

methods are equivalent in case of exact arithmetic, however, their performance will depend on a 

particular problem. As an alternative solution strategy, the user is enabled to use his own particular 

integrator (e.g., a stiff one), approximate each step the solution trajectory using polynomials and let the 

linear version of the code to evaluate the LE estimates. This latter approach could be also used for 

estimation of LE of a discrete (experimental) data series.  

To illustrate the method, the non-linear version of the code was employed to compute the LE of the same 

Lorenz system as above. Namely, the procedure LESNLS was used, which require explicit formulation of 

 

Fig. 2: Approximation of largest LE of the Lorenz 

attractor using discrete data for three values of the 

embedded dimension ℳ = 1, 2, 3. 
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the Jacobian of the system. The 

computed LE were: 𝜆1 = 0.9095, 

𝜆2 = −0.000696, 𝜆3 = −14.5755 

and this values correspond well with 

other sources. The computed 

Lyapunov exponents as a function of 

time in a semilog scale are shown in 

Fig. 3. 

3.  Conclusions 

The Lyapunov exponents play an 

irreplaceable role in characterization 

of dynamical systems behaviour. By 

the very nature of the limiting process 

intrinsic in the definition of 

Lyapunov exponents, their approximation is bound to be limited in extent, and perhaps the 

approximations themselves may be considered of dubious validity. This fact was shown in the first part of 

the text, where several definition-based approaches were discussed. Although there exist good 

implementations of such methods, stress was put upon illustrative examples of difficulties present in the 

nature of estimation of Lyapunov exponents for continuous systems and experimental data. On the other 

hand, it seems that the approach based on the orthogonal QR factorization of the Jacobian can serve as a 

reasonable and robust method. 
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Fig. 3:Convergence of all three LE of the Lorenz attractor  

using the QR procedure LESNLS. 
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