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Abstract: In specific fields of research such as treatment of historical structures, medical imaging, material 

science, geophysics and others, it is of particular interest to perform only a non-intrusive boundary 

measurement. The idea is to obtain a comprehensive information about the material properties inside the 

domain under consideration while maintaining the test sample intact. This contribution is focused on such 

problems i.e. synthesizing a physical model of interest with a boundary inverse techniques. The forward 

model is represented by a basic time dependent diffusion equation with Finite Element (FE) discretization 

and the parameters are subsequently recovered using a modified Calderon problem principle, numerically 

solved by a regularized Gauss-Newton method. We provide a basic framework, implementation details and 

modification of general constrains originally derived for a standard setup of Calderon problem. The 

proposed model setup was numerically verified for various domains, load conditions and material field 

distributions. Both steady-state and time dependent cases are studied. 
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1. Introduction 

In this contribution we propose two linear models describing a heat transfer and an inverse method based 

on Neuman-to-Dirichlet (NTD) operator. Although the idea of boundary inverse method using electric 

current dates back to 1930s in geophysics it has gained more attention must later in 1980s as a medical 

imaging technique, i.e. Electrical Impedance Tomography (EIT). The first rigorous formulation of this 

problem is the most commonly attributed to Argentinian mathematician Alberto Calderón who formed his 

thoughts in his foundational paper (Calderón 1980). Further development and proofs of uniqueness of the 

solution were given in (Somersalo, et al., 1992 and Brown, 1997). The basic procedure in EIT is 

following: by stimulating electrodes attached on a body surface with different injection patterns and 

simultaneously measuring the resulting potentials on these electrodes, one can with the knowledge of 

domain shape, electrode impedance and applied current uniquely recover the isotropic conductivity field 

(Calderón 1980). 

2. Forward models 

The presented models will play a fundamental role since each will be repeatedly evaluated in the inverse 

process and will also substitute an experiment, i.e. will be used to generate artificial measurements. The 

steady-state model represents a straight forward, single-parameter model that closely relates to the 

classical concept of Calderón problem, while the time-dependent model is essentially a two-parameter 

based and has a wider spread of use in real world applications. 

2.1. Steady-state heat transfer 

Following the same principles mentioned in (Calderón, 1980), one can obtain a similar set of equations 

for a steady-state heat transfer, allowing a more general boundary conditions. The governing equations 

may therefore take a following form 
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where u is a temperature, λ is a thermal conductivity, L is the number of electrodes, rl is an electrode 

resistance coefficient, el is l-th electrode and Tl is the l-th stimulation pattern. The environment factors are 

α being the heat transfer coefficient, u0 is the outside temperature and fN are prescribed fluxes with 

corresponding boundary subsets 𝜕Ω𝑇 and 𝜕Ω𝑁 respectively.  

Contrary to electrostatics, the consequences of aforementioned conditions are following relaxed 

assumptions under which the solution can be proved (Somersalo, et al., 1992 and Cheng, et al., 1989): 

Assumption 1. The conductivity λ, contact resistances rl and transfer coefficients α
(i)

 satisfy following 

(𝑖) 𝜆 ∈ 𝐿∞(Ω;𝑅), inf
𝑥∈Ω

𝜆(𝑥) =  𝜆− > 0, 

(𝑖𝑖) 0 <  𝑟𝑙
− ≤ 𝑟𝑙  ≤  𝑟𝑙

+ < ∞, 𝑙 = 1,… , 𝐿, 

(𝑖𝑖𝑖) 0 <  𝛼−
(𝑖) ≤ 𝛼(𝑖) ≤ 𝛼+

(𝑖)
< ∞,∀𝑖. 

In this settings, we assume the accessible boundary Γ𝑚 is completely captured with a thermal camera or 

with an array or discrete thermometers. Each active electrode is then consecutively, one after each other, 

heated to temperature 𝑇𝑙 resulting into L thermal images of the observed boundary Γ𝑚. 

2.2.  Time dependent heat transfer 

In real conditions it is, however, not an easy task to maintain a stable and steady state conditions. Not 

only the surrounding temperature will fluctuate, but for standard building materials like bricks, wood, etc. 

the steady state, after changing the loading conditions, is reached after several hours or days depending on 

the volumetric capacity, heat conductivity, material thickness and temperature change. Therefore, we 

intend to apply the identical principles used in a Calderón problem for time dependent models. 

To capture a time dependent heat transfer, one can adapt following set of equations 

 

{
 
 

 
  ρcp

𝜕𝑢

𝜕𝑡
− ∇ ⋅ (𝜆∇𝑢) = 𝑓,         𝑥 ∈ Ω

    𝛼(𝑖)(𝑢0
(𝑖)(𝑥)−𝑢(𝑥))=𝑓𝑇,       𝑥∈𝜕Ω𝑇

(𝑖)

                                          𝑢=𝑓𝐷,       𝑥∈𝜕Ω𝐷
(𝑖)

                            𝜆
𝜕𝑢

𝜕𝑛
(𝑥) = 𝑓𝑁,       𝑥 ∈ 𝜕Ω𝑁

(𝑖)

 (2) 

where ρ is volumetric mass density, 𝑐𝑝 is specific heat capacity and 𝜕Ω𝑁,𝑇,𝐷
(𝑖)

 are non-intersecting subsets 

of boundary 𝜕Ω(𝑖) in i-th loading condition with corresponding environmental factors 𝑢0, 𝛼(𝑖), 𝑓𝑇,𝐷,𝑁. In 

order to maintain NTD sensing, the set of equations in is subjected to following constrain 

Assumption 2. Let 𝛤𝑚 be a subset of boundary 𝜕𝛺 that is being observed. Then 

Ψ = (𝜕Ω𝑁
(𝑖)
∪ 𝜕Ω𝑇

(𝑖)
) ∶ (Ψ ∩ Γ) ∉ ∅,∀𝑖,  

must hold, i.e. the boundary subjected to measurements must contain at least some Neumann conditions. 

Conditions as indicated in assumption 1 must be also met, i.e. (ii,iii) have to be extended for 𝜌 and 𝑐𝑝. 

In this settings, the model is intended to only rely on the environment natural factors without stimulating 

electrodes. Also the data from thermal cameras are recorded continuously on the accessible boundary. 

3. Numerical solution of the inverse problem 

Results in section 4 share the following regularized Gauss-Newton iteration scheme (Holder, 2004) 

 𝜎𝑘+1 = 𝜎𝑘 + 𝛿𝜎𝑘 (3) 
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 𝛿𝜎𝑘 = (𝑱𝑘
T𝑱𝑘 + 𝛼𝑘𝑳

T𝑳)
−1
((𝑱𝑘

T(𝒖𝑟 − 𝐹(𝜎𝑘)) − 𝛼𝑘𝑳
T𝑳(𝜎𝑘 − 𝜎𝑟)) (4) 

where 𝑓(𝜎) ∈ 𝑅𝑣𝑤 represents a discrete NTD operator of a forward model with v being the number of 

measurement points and w is the number of experiments. The a priori measured quantity is stored in 

vector 𝒖𝑟 ∈ 𝑅
𝑣𝑤 and the regularization operator L is a pre-calculated Laplacian. In all cases the reference 

field 𝜎𝑟 = 𝜎0 = 1. From our experience, the most reliable choice of hyper-parameter 𝛼𝑘 was the one 

used in Levenberg-Marquardt regularization in a following form  

 𝛼𝑘 = max(𝑚𝑎𝑥(𝑱𝑘
𝑇𝑱𝑘)) (5) 

Jacobian 𝑱𝑘  was updated in each iteration and was calculated numerically in a following way 

 𝐽𝑖
(𝑗𝑘𝑙)

= 
𝜕𝑢𝑗𝑘

𝜕𝜎𝑖
𝑙  (6) 

where 𝑱𝑖 is a third-order tensor in i-th iteration, indexes jk are representing measurement nodes in FE 

mesh and individual measurements respectively. Index l identifies a conductivity change on l-th element. 

4. Results 

In this section we investigate the models under various conditions. Specifically, we consider partial data 

reconstruction and different material properties.  

From Fig. 2 and Fig. 3 one can notice that the rightmost figures suffer from an insufficiency of data 

leading into major artefacts in reconstructed material fields. Also the non-smooth material field was more 

difficult to recover, which was most evident in the leftmost Fig. 2 and Fig. 3.  

Results for a single parameter steady-state simulations were generated in approximately 10 Gauss-

Newton iterations, whereas the two-parameter time-dependent problem took 72 iterations. Despite the 

inaccuracies in certain situations, e.g. insufficiency of data, non-smooth material field, the Gauss-Newton 

method proved to be stable and reliable solver for such tasks. 

Steady-state heat transfer model  

The foregoing results were generated for following boundary conditions: 𝑓𝑇 = 10 ⋅ (𝑢𝑖 − 𝑢), where 

𝑢1 = 30 °C, u2 = 15 °C. The other parameters were chosen in a following way: 𝑇𝑙 = 10 °C, 

𝑟𝑙 = 0.01
°C m2

W
. 

 

 

 

 

 

 

 

Fig. 2: Reconstruction: a smooth distribution. In grey: original field, in color: reconstructed field. 

Fig. 1: A set of domains with different boundaries subjected to measurements. 

Red dots: measurement nodes, blue lines: electrodes. 
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Fig. 3: Reconstruction: non-smooth distribution. In grey: original field, in color: reconstructed field. 

Time-dependent heat transfer model 

Assumed boundary conditions are captured in Fig. 4 with a following meaning: 𝑓𝑇|𝜕Ω𝑖 = 10 ⋅ (𝑓𝑖 − 𝑢) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Reconstruction: left: conductivity field, right: volumetric capacity. 
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Fig. 4: Domain with oundary conditions. 
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