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Abstract: The present work deals with the study of an axisymmetric flat annular crack problem in a semi-

infinite elastic medium. The external surface is supposed without mechanical loads while the crack surface is 

subjected to a uniform internal pressure. The mixed boundary value problem is solved by the Hankel integral 

transforms method using the Boussinnesq’s stress functions. Then the three-part mixed boundary value 

problem is converted to a system of coupled triple integral equations of Bessel functions. Furthermore, by 

applying some integral relations and involving the addition Gengenbauer formula, the system is reduced to a 

solution of an infinite algebraic system equations for determining the unknown coefficients development. The 

explicit formula for the stress intensity factors near the crack fronts are derived, by means of those 

coefficients. 

Keywords:  Axisymmetric deformation, Mixed boundary value problem, Annular crack, Triple 

integral equations, Stress intensity factors. 

1. Introduction 

The stress analysis of crack problems is of fundamental interest for the study of initiation and propagation 

of fracture and failure in brittle material. The annular crack form is one of the defect can be met. To 

examine such a problem diverse analytical and approximate methods were proposed by the researcher. 

The earlier studies were presented by Moss et al. (1971), who develop an iterative approximate solution 

for the stress intensity factors near the crack fronts. The analysis presented by Shibuya et al. (1975), 

(1976), and Koizumi et al. (1977) employ an analytical method to reduce the governing triple integral 

equations to a solution of an infinite algebraic system. Mastrojannis et al. (1981) present an approximate 

solution of the axisymmetric problem of an annular crack embedded in an infinite elastic solid. By using 

the Betti’s reciprocal theorem, Choi et al. (1982) derive the integral equations for a problem involving flat 

toroidal crack subjected to axial or torsional load. Selvadurai et al. (1985) reduce the annular three-part 

mixed boundary value problem to the solution of a system Fredholm integral equations which they solve 

by the parameter method. 

The purpose of this paper is to examine an annular crack in a semi-infinite elastic medium, opened up by 

an internal pressure. The used method is inspired from the works of Shibuya et al. (1976) and Koizumi et 

al. (1977), which deal with a crack problem in an elastic solid. The analysis transforms the three-part 

mixed boundary value problem to a resolution of system the two triples integral equations, which is 

reduced directly to a solution of an infinite algebraic system equations, for determining the unknown 

coefficients development. The stress intensity factors are expressed in term of the series involving those 

coefficients. 

2. Problem formulation 

The annular crack is located on the z = 0 plane, with the inner and outer radii a and b, respectively, as 

shown in Fig. 1. The external surface of the infinite half-space medium z = −h is supposed without 

mechanical load, while the crack is assumed under a uniform internal pressure p0. Since the crack 
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generates a discontinuity in the medium, it is required to be divided into two regions: (1) denotes the 

upper one (z ≥ 0), whereas (2) corresponds the lower region (−h ≤ z ≤ 0). 

 

Fig. 1: Geometry of the problem. 

The displacement and stress components should be reduced to zero as r
2
+z

2 ∞ for z ≥ 0. Furthermore, 

the appropriate boundary and continuity conditions can be formulated as follows 

 
(2) (2)( , ) ( , ) 0z rzr h r h     , 0r   (1) 

 
(1) (2)
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where ur, uz  are the radial and axial displacement components, z and rz are the components of normal 

and shear stresses along z and r, respectively. 

3. Derivation of the integrals equations 

For an axisymmetric problem with cylindrical coordinate system of r and z, in the absence of body forces, 

the general solution of the Lamé equilibrium equations for the two non-vanishing displacement 

components ur
(i)

(r, z) and uz
(i)

(r, z), I = 1, 2 can be expressed in terms of Boussinesq’s stress functions 

0
(i)

(r, z) and 3
(i)

(r, z) , cf. Shibuya, 1975. They satisfy the following harmonic equations 

 
( ) ( )

0 3 0i i      (5) 

where ∆ is Laplace’s operator stated to the cylindrical coordinate system. Moreover, the stresses 

components can be clearly represented by tatter stress functions on the basis of Hooke’s law. The solution 

of equations (5) can be obtained by applying the Hankel transform method of the zeroth order and its 

inverse. Thus, it can be expressed in a general form as 

  (1)
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where J0  denotes the zeroth order Bessel function of the first kind. The auxiliary functions A, B, C, D, E 

and F with respect to λ are to be determined from the appropriate boundary and continuity conditions. 

Then we can get the displacement and stress components in term of those arbitrary functions. By means 

of the boundary and the continuity conditions (1),  (2) and (3), a system of four equations is obtained for 

calculating the unknown functions A, B, C, D, E and F. From this system, it is expedient to reduce the six 

unknown functions into only two. Meanwhile, using the resulting formulas and inserting them into the 

conditions (4) and (2), leads to a system of coupled triples integral equations, which depend on the both 

Bessel functions of the first kind of zeroth and first order. This system may be stated in closed form as 

 
   

     

2

0
0

2 2

0 0
0

2 1 0,     ,

2 1 2 1 2 ,     

h

h h

Ee h F J r d r a r b

e h E e h F J r d p a r b



 

  

    






      

        
 




 (8) 

451



 

 4 
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Following Shibuya et al. (1976) and Koizumi et al. (1977) works, for solving the above system we use the 

integrals 
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The first integral equations of (8) and (9) are then satisfied by taking 
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where an  and bn are unknown coefficients. Next, from the equations (11), by expressing  E and F in term 

of the two unknown coefficients, and substituting in the second equations of (8) and (9), and using the 

addition Gengenbauer formula, after some algebra, one gets an algebraic system stated in a closed matrix 

form as 
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where 1,m denotes the Kronecker delta, and 
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Consequently, the governing integral equations were reduced to the solution of algebraic system 

equations (12). On the basis of these results, the displacements and stresses components as well as the 

stress intensity factors given by the following formulas 
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can be derived. 

4. Results and discussion 

The unknown coefficients an and bn discussed in previous section are determined by solving the system 

(12), whereas the infinite integrals in (13) can be evaluated numericaly. Here, it had been tested that 

fifteen terms of coefficients are sufficient to get numericaly good results of stress intensity factors. 

Fig. 2 shows the variations of normalized stress intensity factors corresponding of mode I and II near the 

crack fronts in function of a/b for different values of h/b. It is noted that the stress intensity factors are 

giving their large values when a/b0 with a thinner thickness h/b0, decrease with increasing one of the 

preceding parameters. Additionally, it is clear that the SIFs corresponding of mode I is always greater 

than the SIFs of mode II. The SIFs corresponding of mode I in the inner crack is greater than the other, 
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however, the opposite behavior occurs for the SIFs corresponding of mode II. Moreover, with increasing 

the layer thickness h/b ∞, the obtained results are in good agreement with those reported in the current 

literatures, such as the works of Shibuya et al. (1975), Koizumi et al. (1975), Mastrojannis et al. (1981), 

Choi et al. (1982) and Selvadurai et al. (1983). 

 

Fig. 2: Variations of stress intensity factors corresponding of mode I and II at the inner  

and the outer radii of the crack against a/b for various values of h/b. 

5. Conclusions 

This work studies the axisymmetric problem related to the internal loading of an annular crack located in 

a semi-infinite elastic medium. The mixed boundary value problem was reduced to the solution of an 

infinite algebraic system equations. A closed form solution of stress intensity factors were obtained. As a 

result, we can analyze their variations, to figure out the depth effect of the thickness and the radii on the 

crack propagation. 
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