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Abstract: In this paper, we test a two-time step explicit scheme with local time stepping. The standard 

explicit time scheme in finite element analysis is not able to keep accuracy of stress distribution through 

meshes with different local Courant numbers for each finite element. The used two-time step scheme with the 

diagonal mass matrix is based on the modification of the central difference method with pullback 

interpolation. We present a numerical example of one-dimensional wave propagation in a bimaterial elastic 

bar. Based on numerical tests, the employed time scheme with pullback interpolation and local stepping 

technique is able to eliminate spurious oscillations in stress distribution in numerical modelling of shock 

wave propagation in heterogeneous materials.  

Keywords:  Wave propagation in heterogeneous materials, Explicit time integration, Finite element 

method, Local stepping, Spurious oscillations. 

1. Introduction 

Currently, application potential for heterogeneous and, mainly, functionally graded materials (FGM) in 

industrial and engineering problems grows up. The reason is that 3D printing manufacturing processes 

and tools are available and financially attractive for a wider range of users. Further, functionally graded 

materials offer many advantages in real problems in comparison with conventional materials (Ebrahimi, 

2016). 

We focus on numerical solution of wave propagation in an elastic bar consisting of two different 

materials as the simplest problems of heterogeneous media. Wave propagation in functionally graded 

materials has been analyzed in (Chiu et al., 1999). More complex modelling of such heterogeneous 

materials has been done in (Berezovski et al., 2008). 

In this paper, we use the finite element method (FEM) with explicit direct time integration based on the 

central difference method (Hughes, 2000). As it is known, the finite element method produces dispersion 

behaviour and spurious oscillations of stress components in numerical modelling of wave propagation in 

solids (Kolman at el., 2016b). Moreover, elastic waves run through bodies with different wave speeds. 

Further, elastic wave speed in heterogeneous media influences on local material parameters, therefore 

wave speed is different for each material position. This phenomenon means a big trouble for numerical 

methods, because wave speed affects stability limit for explicit schemes. Several numerical approaches 

for elimination of spurious oscillations in heterogeneous media have been developed, as the Park method 

(Park at el, 2012, Cho at el, 2013) based on pullback interpolation or the Idesman method based on post-

processing filtering (Idesman 2014).  
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2. Problem definition and explicit time scheme with local stepping 

We consider the initial stage of wave propagation in an one-dimensional “thin” bimaterial bar in the 

framework of the classical small strain elasticity theory, see Fig.1. The linear constitutive equation in the 

form of Hooke’s law is assumed, but material parameters are different for each part of a bar.  

 

Fig. 1: Scheme of a free-fixed bimaterial elastic bar under shock loading. 

One-dimensional wave motion in a bimaterial elastic bar (Fig. 1) is governed by the equations of motion 

for each part, see (Graff 1975), as 
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with boundary conditions on interface for displacement field ),(),( 1211 tLxutLxu  and stress field

),(),( 1211 tLxtLx   . Further, 0t  denotes the time, 21,  are the mass densities, and 21, EE

denote the Young moduli. Wave speeds in each bar domain are given by relationships 1101 / Ec  ,

2202 / Ec  . Based on analytical solution (Graff 1975), the transmitted and reflected amplitudes of 

the waves are prescribed as 
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 , where 111 EZ  , 222 EZ  are the 

acoustic impedance for each material, respectively. This theoretical stress distribution along an elastic 

bimaterial free-fix bar under shock loading is used for the comparison with numerical solutions.  

3. Numerical method for wave propagation in a heterogeneous bar 

The used numerical method for wave propagation in heterogeneous materials is based on the algorithm 

presented in the Park’s papers (Park et al., 2012) and (Cho et al., 2013). This scheme has been 

reformulated into the two-time step scheme in work (Kolman et al., 2016a). The used time stepping 

process is consisted of following two computational steps for predictor-corrector form: 

Step 1: Pull-back integration with local stepping 

a) Integration by the central difference scheme with the local (elemental) critical time step size for 

each finite element (i.e. 1ct  or 2ct ). 

b) Pull-back interpolation of local nodal displacement vector at the time ttt nn 1 . 

c) Assembling of local contributions of displacement vector from Step 1b. 

Step 2: Push-forward integration with averaging 

a) Push-forward integration by the central difference scheme with the time step size t . 

b) Averaging of the total displacement vectors at the time 1nt  form Steps 1c and 2a. 

c) Evaluation of acceleration and velocity nodal vectors at the time 1nt . 

Implementation details and formulae for this two-time step scheme, one can see in (Park et al., 2016; Cho 

et al., 2013; Kolman et al., 2016a). A scheme of pullback interpolation for two different local critical time 

step sizes is depicted in Fig. 2.  
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Fig. 2: Extrapolation of the displacement u(x, t) at steps (n + c1) and (n + c2) 

 followed by interpolation at the next step (n + 1). 

4. Formulation of bimaterial test and results  

In this Section, we present results of numerical solution of wave propagation problem in a bimaterial 

elastic bar defined in the previous Section. Geometrical and material parameters of the task are set as: the 

domain lengths 11 L  m, 22 L  m, the cross-section 1A  m
2
, Young’s modulus 161 E  Pa,  

12 E  Pa, the mass density 121    kg/m
3
 and the amplitude of impact pressure 10   Pa, thus 

the applied force is 100  AF  N. We use computational mesh with 240 uniform finite elements, the 

FE length is taken as 0083.0/2  NELH  m. Time duration of the loading is takes as 110 /5.0 cLT  , 

final time of computations is set as 11 /8.1 cLtend  . The critical time step sizes for finite elements of 

material 1 and material 2 are given as 011 / cHtc   and 022 / cHtc  . In the case, 0201 cc  , the value 

1ct dictates the global stability limit so 1cc tt  . For computations by the Park method with and 

without local stepping, we use the time step size as 15.0 ctt  . For analysis of accuracy of the central 

difference method, results are computed for time step sizes 15.0 ctt   and 19.0 ctt  . It means by 

the Courant numbers: 5.0Co  and 9.0Co . The transmitted and reflected amplitudes for the test are 

given as 5/2T  and 5/3R . 

                                     a)                                                                          b)          

 

                                     c)                                                                         d)           

 

Fig. 3: Stress distributions at a bimaterial elastic bar under shock loading obtained by a) the central 

difference method with Courant number 0.5; b) the central difference method with Courant number 0.9; 

c) the Park method without local stepping; d) the Park method with local stepping. 

476



 

 5 

In Fig. 3, one can see results of stress distributions in a bimaterial elastic bar defined above. We employ 

the central difference method with Courant numbers 0.5 and 0.9, the Park method without and with local 

stepping technique. Based on comparison, we can say that the Park method with local stepping technique 

cardinally improves the stress distribution and, in principle, spurious oscillations are eliminated, but only 

small cusps on the corners of stress discontinuities can be observed. 

5. Conclusions 

In this paper, we have tested the two-time step explicit scheme based on pullback interpolation with local 

stepping for accurate tracking of elastic wave in heterogeneous media. The bimaterial bar test has showed 

accuracy of the presented scheme. Further, the scheme is able to eliminate spurious oscillations in 

numerical modelling against the central difference method. In the future, we will focus on using the 

presented scheme for wave modelling in layered and functionally graded materials.   
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