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Abstract: An algorithm of the gyroscope system control in the seeker with the use of LQR (linear quadratic 

regulator) modified method was presented in this paper. The modification of the method consists in applying 

Jacobian J derived from the equations of the non-linear motion of the gyroscope system in the place of state 

matrix A with constant values. It makes it possible to determine the motion equations of the matrix system of 

K reinforcements of the closed control system with a square quality indicator in every step of integration. 

The research results showed that this type of control provides greater precision and effectiveness of control 

of the gyroscope system of tracking a moveable target in space. Some research results were presented 

graphically.  
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1. Introduction 

Gyroscope systems (GS) are widely applied in systems of observation and target tracking situated on the 

board of moveable objects (Koruba, 2010 and Dziopa et al., 2010). Due to the fact that high precision is 

required from them, stabilizing and tracking control should be carefully selected (Gapiński et al., 2014 

and Gapiński, 2014). The classic method of optimal control of the gyroscope axis motion with a square 

quality indicator seems to be unsatisfactory as far as the influence of external disturbances in the form of 

kinematic base influence as well as the parameters of the gyroscope itself changeable over time (friction 

in frame bearings, rotor imbalance, a situation when the mass centre does not overlap with frame rotation 

centre, etc.) are concerned. LQR method assumes that the linear system and state matrix A with constant 

parameters are in question (Grzyb, 2016, Krzysztofik, 2014 and Koruba, 2013). Such simplification 

results in the fact that after relatively short time, tracking is not precise enough. In order to prevent this, 

Jacobian should be determined on the basis of the nonlinear equations describing the gyroscope system 

motion (Kim, 2010) in the following way: 
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 (1) 

where: 4321 ,,, ffff  – non-linear functions of right sides of the motion equations of the gyroscope 

system; gg  ,  – deviation angles of the internal and external frames of the gyroscope (angles defining 
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the position of the gyroscope axis in space); gg   ,  – angular velocity of the deviation of the internal and 

external gyroscope frames.  

Controlling the gyroscope system consists in tracking the set direction in space by its axis, e.g. the line of 

sight (LOS) connecting the centre mass of the optical system of the gyroscope system with the moveable 

point in space being tracked. The angular position of the line of sight in comparison with the axis of the 

non-moveable reference system will be marked with angles:   i , which specify the so called desired 

motion of the gyroscope axis. During the operation of the gyroscope, the rotor axis adopts the positions 

determined with angles: gg   i , which define the so called performed motion of the gyroscope axis. The 

line of sight might be then determined incorrectly, on the basis of which the missile is guided towards the 

target in homing systems. With too excessive deviations of the line of sight from the set position, the sight 

of the target image might be lost.  

Deviation of the performed motion from the desired one is determined in the following way:  

    22
  ggΔ  (2) 

Quantity  is called an actual control deviation. Apart from that, the notion of partial control deviations as 

the differences of angles is used: 

    gg ee ,  (3) 

The task of the tracking system is to minimize those deviations to zero. In order to perform the control in 

question, control with the use of LQR modified method might be applied.  

2. An algorithm of optimal control of the gyroscope system  

In order to determine the optimal control, the following quality criterion (target function) is formulated 

(Lewis et al., 2012 and Takosoglu, 2016):  

   

ft

TT dt

0

RuuQee
2

1
I(u)  (4) 

where e is a vector, whose components are the deviations described with an eq. (3) together with their 

derivatives in relation to time; u is a vector of the controlling moments put against the gyroscope frames; 

Q is a positive semi-definite square, symmetric matrix called the state weighting matrix; R is a positive 

definite square, symmetric matrix called the control cost matrix. 

The optimal control problem consists in solving the feedback gain matrix, K, so that the scalar objective 

function, I(u), is minimized if all state variables can be measured. 

One of the important properties of LQR is that provided certain conditions are met, they guarantee 

nominally stable closed-loop system. The conditions for achieving a stable linear quadratic system are as 

follows (Tewari, 2002):  

  B A,,0Q0,R   – controlable (5) 

where A, B – matrices of state and control of the gyroscope system, respectively (as described in Koruba 

et al., 2010).  

The reinforcement matrix might be determined with the use of Matlab function: 

  R Q, B, J,lqrK   (6) 

It should be highlighted that in LQR function described with eq. (6), the state matrix A state of the 

gyroscope system was replaced with Jacobian J which was presented with eq. (1). It constitutes an 

essence of the modified control of the gyroscope system. Matrix of reinforcements K becomes non-

stationary and is calculated at each stage of determining the control signals Kxu   (x – state vector 

with components: gggg   ,,, ). Choosing the weight matrices Q and R usually involves some kind of 

trial and error. 
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3. Numerical example and the results 

Let us consider the following issue. A moveable point in space is observed from the Earth by the seeker. 

The control task consists in the fact that the gyroscope axis is to overlap with the line of sight. Thus, the 

moveable target is being tracked. In the example, the results of which were presented in Figs. 1 – 4, the 

moveable point (target) determines the angles which are the desired signals, on the basis of the following 

equations:  

 20.2)(   va ,     vb)(   (7) 

where: 

5.1 ;2.0 ;1.0  ba  – motion parameters of the point in space (set motion).  

The research was conducted with an integration step amounting to 00001.0dt  (Baranowski, 2013). 

  

Fig. 1: Changes of performed and set angles in the 

time function with the use of matrice A with 

constant parameters.  

Fig. 2: Changes of performed and set angles in the 

time function with the use of Jacobian J. 

  

Fig. 3: Trajectories of the performed and desired 

motion with the use of matrice A  

with constant parameters.  

Fig. 4: Trajectories of the performed and desired 

motion with the use of Jacobian J. 

The following matrix values were adopted:  

A = [0 1 0 0; 0 -200 0 -1200; 0 0 0 1; 0 1200 0 -200]; 

B = [0 0; 4000 0; 0 0; 0 4000; 

Q = [1000 0 0 0; 0 10 0 0; 0 0 1000 0; 0 0 0 10]; 

R = [0.25 0; 0 0.25]. 
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Taking the above charts showed in Figs. 1 – 4 into consideration, it is clear that control with the use of 

LQR modified method using Jacobian J operates in a better way – the gyroscope system axis reflects 

more faithfully the set motion along the observation line of the moveable point in space described with 

eq. (7).  

4. Conclusions 

The control algorithm presented in this paper makes it possible to control the gyroscope system more 

precisely also in the case of changing its parameters over time. The example analyzed in the article shows 

that tracking the moveable material point in space by the gyroscope system with the use of Jacobian in a 

closed control loop is more effective than with the use classical LQR control method. As the research 

results showed, the improvement of control precision of the gyroscope system of 10 % might be of crucial 

importance as far as the target achievement in system of missile homing using the gyroscope system of 

this type is concerned. Further studies will refer to the influence of random disturbances in conditions 

with no measurement data of some state variables of the gyroscope system in homing systems.  
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