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Abstract: The paper deals with the hypoplastic model for expansive clays which takes into account the 

double structure of clays. The model is formulated in the rate form which requires integration in time. 

Several integration schemes based on the Runge-Kutta-Fehlberg (RKF) methods of different order have been 

investigated. The RKF methods have been implemented in the FE code SIFEL and there is a comparison of 

their performance on a benchmark example of triaxial test. The mechanical model is accompanied with the 

model of one-phase water flow in the porous medium.  
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1. Introduction 

Expansive clays are known for their large swelling/shrinkage capacity which is influenced by the water 

content namely. Bentonites are also known for their very low permeability coefficient whose typical 

magnitude ranges from 10
-14

 to 10
-12

 m.s
-1

 according to void ratio. Swelling accompanied with low 

permeability comprises self-sealing properties of bentonites that have been exploited in the sealing of 

dams for example. The bentonites are also assumed to be a part of engineering barrier at deep geological 

repositories in high level radioactive waste disposals. The engineering barrier is composed from the 

special containers for spent nuclear fuel sealed by the bentonite layer which should able to stop the 

radionuclides migration in the case of container failure. Obviously, it is crucial for the design of 

engineering barrier to use the proper model of bentonite behaviour. 

In the soil modelling, two major groups of models are exploited. One large (older) group of models is 

based on theory of elasto-plasticity (Hughes 1987) where the model assumes plastic strains in the form 

 �̇� = �̇�
𝜕𝑓(𝛔,𝐡)

𝜕𝛔
, (1) 

 𝛔 = 𝐃𝑒: (𝛆 − 𝛆𝑝), (2) 

where 𝑓(𝛔, 𝐡) represents selected yield function. In the above equations, σ stands for the stress tensor, h 

is the vector of hardening parameters, λ is the consistency parameter, De is the fourth-order elastic 

stiffness tensor, 𝛆 is the total strain tensor and 𝛆𝑝 is the tensor of plastic strains. Several models for the 

partially saturated soils have been proposed (e.g. Alonso, 2011). Advantages of the mentioned elasto-

plastic models is the pressure dependent loading, direct incorporation of the state boundary surface and, in 

the case of extended model, the taking into account the influence of suction pressure. But they have also 

important shortcoming related to the elastic unloading which is not in agreement with the observed soil 

behaviour. 

To avoid of these shortcomings, a relatively new group of hypoplastic models has been developed by 

Gudehus, 2004 and Herle, 20011. They have involved different loading/unloading moduli directly in the 

rate form of stress-strain relation: 

 �̇� = ℳ(𝛔, Δ𝛆, 𝐯): �̇�, (3) 

                                                 
* Ing. Tomáš Koudelka, PhD.: Faculty of Civil Engineering of Czech Technical University in Prague, Thákurova 7; 166 29, 

Prague; CZ, koudelka@cml.fsv.cvut.cz 
** Ing. Tomáš Krejčí, PhD.: Faculty of Civil Engineering of Czech Technical University in Prague, Thákurova 7; 166 29, 

Prague; CZ, koudelka@cml.fsv.cvut.cz 
*** Prof. Jaroslav Kruis, PhD.: Faculty of Civil Engineering of Czech Technical University in Prague, Thákurova 7; 166 29, 

Prague; CZ, koudelka@cml.fsv.cvut.cz 

502



 

 3 

where ℳ is the is the fourth-order generalized stiffness tensor which depends on the actual stresses σ, 

increment of strains Δ𝛆 and other state variables denoted by vector v. The rate from of stress-strain 

relation of the hypoplastic models thus constitutes the system of ordinary differential equations. The total 

stress needed at the equilibrium conditions have to be obtained by the integration of Eq. (3) in time. 

Additionally, the state variables are also given in the rate from and therefor they have to be integrated too. 

2. Hypoplastic model for expansive clays 

The advanced hydro-mechanical model based on hypoplasticity has been proposed in Mašín, 2013. The 

model takes into account the double structure of the aggregated clayey soils and it exploits separated 

formulation of macro and micro behaviour according to well established models (Alonso, 2011 and 

Romero, 2011) but there is added dependence of water retention on volumetric deformation. Coupling 

between macro and microstructure levels depends on size of macropores (interaggregate pores) and there 

is assumed that the shear strength of soil is attributed to the macrostructure and it is given by effective 

stress measure independent on microstructural quantities. Hydraulic equilibrium is assumed between both 

structure levels. 

The model assumes additive decomposition of the total strain rate �̇� in the form 

 �̇� = �̇�𝑀 + 𝑓𝑚�̇�𝑚,        0 ≤ 𝑓𝑚 ≤ 1  (4) 

where 𝑓𝑚 stands for the factor that quantifies the level of occlusion of macro-porosity by aggregates 

ranging from 0 to 1. Similarly, the total void ratio e together with the consistent definition of the porosity 

measures for particular structural levels are defined in the model. Two different mechanical models for 

macro and microstructure level are defined in the model. Assuming local hydraulic equilibrium and the 

Bishop's effective stresses concept, the following terms for the rates of effective stresses at macro and 

micro levels are given 

 �̇�𝑀 = 𝑓𝑠 − (ℒ: 𝛆𝑀 + 𝑓𝑑𝐍‖𝛆𝑀‖) + 𝑓𝑢𝐇,  (5) 

 �̇�𝑚 = 𝐈
𝑝𝑚

𝜅𝑚
𝜀𝑉

𝑚 (6)  

where fs is the barotropy factor, ℒ is the hypoelastic fourth-order tensor, fd is the pyknotropy factor, N is 

the second order tensor defined according to the failure condition, the factor fu and the second order 

tensor H control wet induced collapse. In the microlevel stress term, I is the second order identity tensor, 

p
m
 is the mean stress at the microlevel, κm is the model parameter and 𝜀𝑉

𝑚 is the volumetric strain at 

microlevel. It should be noted, that the reversible behaviour linear in ln 𝑝𝑚 vs. ln(1 + 𝑒𝑚) plot is adopted 

at the microstructure level. The more details about the model can be found in Mašín, 2013. 

3. Model of water flow in deforming porous medium 

In this case, the assumption of isothermal one-phase flow is adopted for the model based on Lewis and 

Schrefler (Lewis, 1971). Neglecting the water vapour exchange and assuming the dependency of the 

degree of saturation on the pore water pressure results in continuity equation for one-phase (liquid water) 

flow in deforming medium 

(
𝛼 − 𝑛

𝐾𝑔
𝑆𝑟

2 +
𝑛 𝑆𝑟

𝐾𝑤
)

𝜕𝑢𝑤

𝜕𝑡
+ (

𝛼 − 𝑛

𝐾𝑔
𝑆𝑟𝑢𝑤 + 𝑛)

𝜕𝑆𝑟

𝜕𝑢𝑤

𝑢𝑤

𝑡
+ 𝛼𝑆𝑟div u +̇ 

 +
1

𝜌𝑤
div [𝜌𝑤 𝑘𝑟𝑤 𝐤𝑠𝑎𝑡

𝜇𝑤
(−grad 𝑢𝑤 + 𝜌𝑤𝐠)] = 0, (7)  

where α is the Biot’s constant, n is the porosity, Sr is the degree of saturation, Kg and Kw are bulk moduli 

of water and grains respectively, uw is the pore water pressure, ρ
w
 is the density of water, k

rw
 stands for the 

relative permeability which depends on the degree of saturation, ksat is the matrix of intrinsic permeability 

of the fully saturated medium, μw is the coefficient of dynamic viscosity and g is the gravity acceleration 

vector. 
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4. Time integration of hypoplastic model 

Recall that in hypoplasticity model described in Section 2, the total stress rate �̇� is defined. Additionally, 

the hypoplastic model involves state variables given by vector v that can be also formulated in the rate 

form and thus generally, the stress rate can be defined by 

 �̇� = 𝓜�̇� = 𝚿(𝝉(𝑡), Δ𝝐(𝑡)), (8)  

where τ is the generalized stress vector 𝝉 = {𝛔, 𝐯}𝑇 , 𝓜 represents the generalized stiffness matrix and 𝛜 

is the generalized strain vector 𝛜 = {𝛆, 𝑠}𝑇 where s is the suction and 𝚿 represents the model response 

function on the given input of strain increment 𝛥𝛜 of the actual time step and attained stress level 𝛕. With 

respect to experiences and conclusions in Sloan, 2014, the explicit integration Runge-Kutta-Fehlberg 

algorithm with substepping has been selected and implemented in SIFEL. Eq. (8) represents initial value 

problem given by the set of ordinary differential equations. These equations can be written in generic 

substep k at time interval [𝑡𝑛;  𝑡𝑛+1] formally as follows 

 𝛕𝑘+1 = 𝛕𝑘 + Δ𝑡𝑘 ∑ 𝑏𝑖  𝒌𝑖(𝛕𝑘 Δ𝝐(𝑡𝑛+1), Δ𝑡𝑘)𝑠
𝑖=1 , (9)  

where 𝒌𝑖(𝝉𝑘 , Δ𝝐(𝑡𝑛+1), Δ𝑡𝑘) represents the function 𝚿 evaluated for the given strain increment of the 

actual time step Δ𝝐(𝑡𝑛+1) = 𝝐(𝑡𝑛+1) − 𝝐(𝑡𝑛) and attained stress levels at the prescribed points of time 

interval. In Eq. (9), dimensionless step length Δ𝑡𝑘 ∈ (0; 1] has been introduced with the following 

definition 

 Δ𝑡𝑘 =
𝑡𝑘+1−𝑡𝑘

𝑡𝑛+1−𝑡𝑛
 . (10)  

In RKF method, the step length Δ𝑡𝑘 is constructed according the difference between solution of two 

embedded Runge-Kutta algorithms of different order of accuracy obtained by the set of coefficients �̅�𝑖 

and �̃�𝑖. These coefficients may be summarized in the form of Butcher table whose generalized example is 

given in Tab. 1. According to this table, coefficients 𝒌𝑖 can be evaluated in selected times and 

corresponding stress values 

 𝒌𝑖(𝝉𝑘, Δ𝝐(𝑡𝑛+1), Δ𝑡𝑘) = 𝚿(𝝉𝑘 + Δ𝑡𝑘 ∑ �̃�𝑖,𝑗𝒌𝑗 , Δ𝜖(𝑡𝑛+1)𝑖−1
𝑗=1 ). (11)  

Coefficients �̃�𝑖,𝑗, �̅�𝑗, �̃�𝑗 �̃�𝑖 are selected so that the method provides the numerical approximation of the 

solution of order s and s+1.  

Tab. 1: Generalized example of the Butcher table. 

 

Several time integration RKF schemes have been implemented and their description in the form of 

Butcher's tables is given in Tabs. 2, 3 and 4. Should be noted that the algorithm RKF-23bs is the Bogacki-

Shampine coefficient pairs proposed in Shampine, 1987 and the advantage of the method is that it 

provides the better estimate of error with the minimum cost because the 𝒌4 can be used as 𝒌1 in the next 

step - First Same As Last (FSAL) concept. 

Tab. 2: Butcher table for RKF-23 (left) and RKF-23bs Bogacki-Shampine (right). 
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Tab. 3: Butcher table for RKF-45. 

 

5. Performance comparison of various integration schemes 

The implemented hypoplasticity model was tested on a benchmark example with axisymmetrical 

specimen 1x1 m subjected by triaxial drained test with constant confining pressure and gradually 

increasing axial load, initial stress -200 kPa, constant suction -1.9 MPa. Comparison of integration 

schemes for various tolerances on benchmark example is given in Tab. 4. 

Tab. 4: RKF schemes comparison. 

 

In Tab. 4, the relative error between two solutions of RKF is denoted by 𝜗, 𝜎𝑒𝑟𝑟 stands for relative error 

of stress vector compared to RKF-45 with the minimum 𝜗 value and there are also elapsed times of 

particular benchmarks denoted by t. 

The constitutive fourth-order tensor exhibited high nonlinearity and high computational demands in the 

selected benchmark example and therefore selection of suitable integration scheme plays important role. 

Comparison revealed that RKF-23bs can be regarded as be optimum choice for this benchmark. 
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