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Abstract: Temperature distribution and thermal stress analyses are presented for an annular fin of 

functionally graded material (FGM). The closed form solution of stress field is obtained by solving the 

steady-state nonlinear differential equation of heat transfer using homotopy perturbation method (HPM) 

coupled with elasticity theory. The properties of the fin material are expressed as linear and power law 

distribution with temperature and radius. The effect of various thermal parameters on the temperature field, 

and subsequently stress field are discussed.  
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1. Introduction 

It is common observation and experience that the stresses are induced in the fin material due to 

nonuniform temperature distribution. Thus, a significant concentration on thermal stress analysis is 

required for fin designing. Nonlinear heat transfer analyses for isotropic annular fins have been well 

studied (Kraus et al., 2001 and Ganji et al., 2011), but there are few works on thermal stress analysis. The 

thermal stress analysis for a perfect elastic isotropic circular fin was presented by Chiu et al. (2002) using 

Adomian's double decomposition method. Lee et al. (2002) employed Laplace transformation coupled 

with finite difference method for thermo-elastic analysis of an annular fin. Mallick et al. (2015) recently 

presented closed form solution for thermal stresses of an isotropic annular fin using HPM coupled with 

classical thermo-elasticity equation. An open literature search reveals that no one attempt to study the fin 

of functionally graded material (FGM) subjected to thermal loading.  

This work presents thermal stress analysis for FGM annular fin. The nonlinear heat transfer equation has 

been solved using HPM. The stress fields are obtained from temperature field, coupled with the elasticity 

equation. The HPM solution are compared with the results obtained using finite difference method. 

2. Governing equations 

2.1. Temperature distribution 

Let us consider an annular fin made of functionally graded material as shown in Fig. 1. The base 

temperature of the fin is assumed to be a constant temperature, Tb and its tip is considered to be adiabatic. 

The energy balance equation for heat transfer together with boundary conditions can be expressed as 

(Kraus et al., 2001): 
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Fig. 1: Fin geometry of FGM. 

Introducing the non-dimensional parameters, the energy balance equation and the boundary conditions are 

reduced to:  

 

 
     

 

 

 
 

 
    

2

1

4 4

1
( )

2 2 1 2 2 1 2 1 2 1

        1 0
2 1 1 21

a

a

m

a

c r s G am

a

R R

G
N N E

R

     
        

 

  
    

 




            

   


       

  

 (3) 

 1   at 0    and 0   at 1R    (4) 

All the above terms are described separately in the nomenclature. Constructing the HPM formulation,  

Eq. 3 can be rewritten as, 
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where p  [0, 1] is an imbedding parameter and L denotes the linear operator as d
2
/d2

. The HPM 

solution converges for p = 1, and the final solution for temperature field can be expressed as: 

 1 2 .....o        (6) 

The details pertaining to the solution procedure have been presented in ref. (Mallick et al., 2015). 

2.2. Thermo-elastic solution 

For functionally graded material, the elastic constant and the co-efficient of thermal expansion are 

assumed to be a function of fin radius: 

     1

0

n

iE r E r r  and     2

0

n

ir r r   (7) 

Introducing a stress function, (r), such that /r r   and /d dr   which satisfy the stress equation 

of equilibrium. Applying Hooke's law for plane stress condition and employing the strain compatibility 

condition, the differential equation in terms of stress function in the non-dimensional form yields, 
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where 1 (= r/ri) is the non-dimensional radius. The general solution for (1) is given as, 
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The constants D1 and D2 are obtained from the boundary conditions, r = 0 at bore and tip of the fin.  
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3. Results and discussion 

The closed form solution and inverse study of an axisymmetric annular fin of functionally graded material 

is presented. Unless mentioned otherwise, the values of non-dimensional parameters Nc = 0.5, Nr = 0.2,  

 = 0.2, m = 0.25,  = 0.2, G = 0.2, n1 = 0.5, n2 = 0.5 and R = 2 are to be taken in the analysis. Fig. 2 

shows the HPM results for the temperature field. For the correctness of the solution, the temperature field 

has been compared with finite difference solution. The result shows only 2.7 % variation in the 

temperature at the tip. The effect of various thermal parameters, Nc, Nr,  and , on the temperature field 

are presented in Fig. 3. It can be seen that the local temperature along the fin radius gradually decreases 

for all the cases. With the increase of the parameters  and , responsible for the variation of thermal 

conductivity, the local temperature field increases. This result suggests that the heat transfer through the 

fin material enhances with the increasing of variable thermal conductivity parameters. On the other side, 

it can be noticed that the heat transfer process expedites with decrease in parameters, Nc and Nr. The 

variation of radial and tangential stresses developed due to the variation of temperature gradient along the 

fin radius. The effect of the parameters describing the variation of Young’s modulus (n1) and coefficient 

of thermal expansion (n2) on the thermal stresses are presented in Fig. 4 and Fig. 5. It can be seen, the 

magnitude of radial and tangential stresses increase with the increase of parameter, n1, as the elastic 

modulus increases with n1. The tangential stress near to the bore is found to be compressive and tensile is 

near to the tip. On the other hand, for the positive value of n2, the co-efficient of thermal expansion 

exponentially increases from the base to tip of the fin. As a result, the tendency of tensile behaviour in 

radial stress is predominant when the value of n2 is positive. Just opposite behaviour is observed when n2 

is negative. 

4. Conclusions  

An approximate closed form solution for temperature and stress field in a fin of FGM has been derived 

successfully. The present work gives an open choice to the designer for selecting and adjusting the fin 

parameters for a desired temperature and stress fields. The stress field mainly depends on the temperature 

gradient, as well as, the parameters responsible for the variation of Young’s modulus and the coefficient 

Fig. 3: Effect of various thermal parameters on 

the variation of temperature distribution. 

2.73 % variation 

Fig. 2: Validation of HPM solution for 

temperature distribution in a fin. 
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of thermal expansion. Mainly, the tangential stress dominates in the fin material and may be responsible 

for the mechanical failures due to thermal loading. 

 

 

Nomenclature 

ri, ro, t inner radius, outer radius and thickness of the fin, 

h(T), k(T), k(r) variable heat transfer coefficient and thermal conductivity parameter, 

hb, qo,   heat transfer coefficient,  heat generation and emissivity parameters, 

k0 thermal conductivity at convection sink temperature or at the bore of the fin, 

,  , , e parameters describing the linear variation of thermal conductivity, surface emissivity and 

internal heat generation, 

β non-dimensional parameter describing the variation of thermal conductivity with respect to 

temperature, bT  , 

m exponent of variable convective heat transfer coefficient, 

Nc non-dimensional thermo-geometric parameter, (2hri
2
/kot )

0.5
, 

Nr non-dimensional conduction-radiation parameter, (
2 32 i s b or T k t ), 

G non-dimensional heat generation parameter, G = qori
2
/koTb, 

EG non-dimensional parameter describing the variation of heat generation, G bE eT , 

Tb, Ta, Ts base temperature of fin, ambient temperature and radiation sink temperature, 

 dimensionless temperature, and dimensionless radiation sink temperature,
bT T  , 

a , s dimensionless convection and radiation sink temperature,
a a bT T  and

s s bT T  , 

, 1 dimensionless radius of fin,  = (r  ri)/ri and 1 = r/ri, 

R annular ratio, R = ro/ri, 

r    non-dimensional radial stress (
0r r E  ) and tangential stress ( 0E   ), 

E(r),  (r) variation of elastic modulus and co-efficient of thermal expansion, 

n1, n2 power index of elastic modulus and co-efficient of thermal expansion variation, 

E0, α0 modulus of elasticity and co-efficient of thermal expansion at the base of the fin, 

  non-dimensional coefficient of thermal expansion, 
0 bT  . 
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