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Abstract: A conventional method to estimate the damping of an oscillatory system is the execution of 

amplitude extinction tests. In the specific case of the roll motion of a vessel, the so-called roll decay tests are 

performed in a model basin. During these tests, the system is posed in an imbalance condition by an external 

moment. For systems where the damping is far below critical value, the transient decay to equilibrium 

condition is oscillatory. There are several methodologies to analyze the decay test time-series, all based on 

the assumption that a pure roll motion has been reproduced. Through this paper an overview of the most 

commonly used methods is given and a comparison of the results is shown for a single ship model decay test. 
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1. Introduction 

To estimate the damping coefficient of the roll motion for a surface vessel, dedicated model tests are 

carried out in specialized hydrodynamic laboratories. The specific test to be performed is the so-called 

rolldecay test. When performed according to the ITTC (International Towing Tank Conference) standard, 

it consists in measuring the amplitude of the roll motion of the ship model as function of time. To do that, 

a predetermined transversal inclination must be given to the model and then let it to oscillate up to 

reaching the equilibrium. The procedure should be performed for all the vessel speeds of interest. From 

the obtained time-series record there are several methods to analyze the data in order to estimate the 

damping coefficients, based on non-linear dynamic equation of roll motion. In the theory of Ship motions, 

it is common practice to linearize the dynamic system by decoupling all the motion equations 

(Blagoveshchensky, 1964). In such a way only the roll equation is considered by neglecting couplings 

with other motion as sway and yaw. In such a way the mathematical treatment of the problem results 

simplified especially when non-linear damping has to be analyzed.Introduction of linear sway or yaw 

coupling, only slightly complicates the problem. The most commonly used methods to evaluate the 

coefficients are here described and applied to a roll decay record. 

2. Roll motion equation 

To describe the pure roll behavior of a vessel subjected toexternal active forces, the following single 

degree of freedom equation can be written: 

       MCBI    (1) 

where Iϕ represents the virtual mass moment of inertia along the longitudinal roll axis, Bϕ is the damping 

moment, Cϕ is the restoring moment and Mϕ represents the external moment due to waves or other 

external forces. In the specific case of a standard decay test, the external moment Mϕ is not considered, 

leading to: 

     0   CBI   (2) 
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Equation (2) can be expressed with several orders of non-linearity, depending on the modeling of the 

damping moment Bϕ and of the restoring moment Cϕ. 

The damping moment Bϕ of a vessel can be expressed as a power series of  and | | usually up to the 

third order but, in case of small oscillations, a second order approximation is sufficient; resulting in: 

    


21 BBB   (3) 

The restoring moment Cϕ of a vessel is expressed in the following form: 

     GZC   (4) 

where Δ is the vessel displacement and  GZ  is the righting arm of the vessel. In this case the righting 

arm can be expressed in terms of odd-order polynomials. In case of small amplitude oscillatioms, a linear 

righting arm can be considered with the following form: 

    GMC   (5) 

where GM is the so-called metacentric height, function of the center of gravity height, of the ship volume 

and of the transversal inertia of the waterplane area. So, by considering formulation (3) for the damping 

moment and (5) for the restoring moment, equation (2) can be rewritten as: 

 021    GMBBI   (6) 

Dividing (6) by Iϕ the motion equation takes the following non-dimensional form: 

 02 2   nw   (7) 

where 2ν is the linear damping coefficient and w is the quadratic damping coefficient. 

3. Logarithmic decrement 

The most common way to analyse a decay test is to find the logarithmic decrement of the consecutive 

oscillation in order to figure out the behaviour of the decay process. Once the oscillation peaks have been 

extracted from the time series, the analysis will proceed with the determination of the successive 

oscillations decrements. In case that equation (7) is used for the roll modelling, a particular solution can 

be found for the first swing, supposing that the first peak is positive. In such a case the term  | | can be 

defined as  2
 and the solution becomes: 
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where the frequency of oscillation ω is defined as 22 n . The decrease in amplitude of the first swing 

and generally of the i+1
th
 swing can be determinedin the following form: 
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where Tc is the period of the oscillation and, in case of a vessel, can be approximated by the rolling period 

without damping T=2π/n (Vlasov, 1930). It must be noted that, by using this kind of notation, all the 

peaks should be considered. When the procedure is applied only to maxima or minima, then the period to 

be considered in (9) is Tc instead of Tc/2. The quantity of the decrement of the single swings can also be 

directly determined from the decay record, making the difference between the consecutive peaks. 

4. Equivalent linear damping 

Another way to evaluate the damping coefficients from the decay test is to use the so-called equivalent 

linear damping representation. This way to represent the data is coming from a theoretical assumption 

based on the Newton statement, establishing that, for small damped oscillations with a resistance law in 

quadratic polynomial form, the decay law for amplitudes can be expressed in approximated form as: 
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21 mm aa    (10) 

where ϕm is the average value of the amplitude of the examined swing. Considering that the restoring 

moment in equation (7) is linear with respect to ϕ, in the instants where the vessel passes through the 

equilibrium position the ϕ-dependent part of the equation goes to zero. Means that, for these time instants, 

the roll equation can be represented as: 

   ttf  cos  (11) 

where f(t) is a function slowly decaying with time. If f(t) is considered as the envelope curve of the decay 

oscillation (Pavlenko, 1947), then a relation can be found between linear and quadratic damping, equating 

the integral of the resistance laws between 0 and ϕm. Resulting in: 
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where 2N and W are the damping coefficients in dimensional form. The dimensional linear damping 

coefficient can be obtained directly from the decay record at each ϕm with the following formulation: 
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where k is a constant function of the ship righting arm. Other approximate formulations can be also 

derived as given by several authors (Meskell, 2011, Rawson et al., 2001) but are not applied here. 

5. Test case 

The procedures explained in the previous sections are here applied on a decay test performed in a model 

basin of ahydrodynamic institute. The time series of the recorded data is represented in Fig. 1 where, as 

usual, the first peak of the record is discarded from the analysis and only the first 6/8 oscillations are 

considered. In fact the last swings, where the amplitude is significantly small (below 1.5 degrees of 

amplitude), can affect the quality of the data analysis. For this reason, just the part indicated in the box of 

Fig. 1 was selected for the analysis.  

 

Fig. 1: Time series of the analyzed roll decay test. 

As common practice, the analyzed data are presented in graphical form (Fig. 2) in such a way that the 

linear damping coefficient is represented as function of the swing amplitude or mean amplitude as per the 

selected method of analysis. In addition, also the quadratic damping coefficient can be determined from 

the linear regression of the plotted data. In Tab. 1 the damping coefficients according to the different 

methods are reported. 
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Fig. 2: Graphical comparison of the different analysis methods. 

The results in Tab. 1 show that the considered methods are giving comparable results regarding the linear 

damping coefficient 2ν. However, due to the different kind of approximations adopted to extract the roll 

decrements, the quadratic damping part is presenting quite some spread in the obtained data. This can be 

also seen in Fig. 1, observing the different slopes of the regression curves 

Tab. 1: Damping values according to different analysis methods. 

Method 2ν w 

Logarithmic decrement 0.027 3.110 

Logarithmic decrement (maxima) 0.031 2.742 

Logarithmic decrement (minima) 0.030 2.640 

Pavlenko 0.026 3.424 

6. Conclusions 

The classical methods presented in this paper and the derived formulations for the determination of non-

linear damping coefficients for the roll motion of a vessel are giving comparable results in the 

determination of the linear damping coefficient. The quadratic coefficient is suffering a higher spread in 

the predictions. Once small amplitude motions are analyzed the current methods can be considered 

satisfactory for the determination of the roll damping coefficients. When non-linearities become of higher 

order, not only in the damping but also in the righting arm, then it will be necessary to study new methods 

to overcome to this issue. 
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