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Abstract: The area of tuned mass dampers is a wide field of inspiration for theoretical studies in non-linear 

dynamics and dynamic stability. The studies attempt to estimate behaviour of diverse damping devices and 

their reliability. The current paper deals with the response of a heavy ball rolling inside a spherical cavity 

under horizontal kinematic excitation. The non-linear system consists of six degrees of freedom with three 

non-holonomic constraints. The contact between the ball and the cavity surface is supposed to be perfect 

without any sliding. The mathematical model using the Appell-Gibbs function of acceleration energy is 

developed and discussed. Comparison with previous planar (SDOF) model which is based on the Lagrangian 

procedure is given. The system has an auto-parametric character and therefore semi-trivial solutions and 

their dynamic stability can be analysed. The most important post-critical regimes are outlined and 

qualitatively evaluated in resonance domain. Numerical experiments were performed when excitation 

frequency is slowly swept up and down to identify different modes of response. Some applications in civil 

engineering as a tuned mass damper, which can be used on slender structures, are mentioned. The proposed 

device is compared with a conventional pendulum damper. Strengths and weaknesses of both absorbers types 

are discussed. 
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1. Introduction 

Various types of passive vibration absorbers are regularly used in civil engineering for suppression of 

wind induced vibration. Transmission towers, TV masts and other slender structures exposed to wind 

excitation are usually equipped by such devices. Usual pendulum-style passive absorbers, see,  

e.g., (Haxton, 1974), utilize the auto-parametric resonance for their damping effect. Although they are 

very effective and reliable their application can be limited by several disadvantages. Dimensions of the 

pendulum and namely its suspension length cannot be neglected or minimized and it could easily happen 

that the structure cannot accommodate this device. This is particularly true for existing structures, where 

an absorber should be installed as a supplementary equipment. Also horizontal constructions, like foot 

bridges, usually cannot include a pendulum-style absorber. Moreover, the complete installation has to 

remain accessible to allow a regular maintenance.  

The ball-type absorber represents an alternative solution, which is less spatially-demanding and 

practically maintenance-free. The basic principle comes out of a rolling movement of a metallic ball of a 

radius 𝑟 inside of a metallic rubber coated spherical cavity of a radius 𝑅 > 𝑟, Fig. 1a. The system can be 

closed in an airtight case. Its vertical dimension depends only on the dimension of the rolling ball and 

thus the assembly can be relatively very small. Such device can be used in cases where a pendulum 

absorber is inapplicable due to lack of vertical space or difficult maintenance. 

First papers dealing with the theoretical and practical aspects of ball absorbers have been published by 

Pirner and Fischer (1994, 2000). The first analysis of the problem on the basis of the rational dynamics 

has been published by the authors in (Náprstek and Pirner, 2002) and later extended in (Náprstek et al., 

2011). The approach in the referenced papers was based on planar model, constructed using the 

Hamiltonian functional with non-holonomic constraints and the respective Lagrangian governing system 
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in 2D, cf. Fig. 1b. The theoretical derivation together with its numerical evaluation was compared to 

practical application up to the state of the realization including some results of long-term measurements. 

Dynamics of the real ball absorber is significantly more complicated in comparison to the pendulum one, 

Fig. 1c. Movement of the ball cannot be described in a linear state although for the first view its 

behaviour is similar to the pendulum absorber type. A number of problems that are related with 

movement stability, auto-parametric resonances, etc., originate from the spherical cavity and ball surface 

imperfections. The ball moving inside the spherical cavity is very sensitive to the stability loss of its 

movement in forcing direction. However, this type of motion is requested, as it determines efficiency of 

the damper. Due to probability of the stability loss, which is much higher than of the spherical pendulum, 

semi-trivial states should be carefully analysed including a large variety of post-critical processes.  

The fully spatial model, unlike the 2D approximation, does not allow the usual approximations of the 

exact formulations. The deflection 𝜑 of the pendulum, cf. Fig. 1c, can be assumed relatively small, it is 

usually lower than 20 − 30 ∘, and the approximations in form of a short Taylor series are acceptable: 

sin 𝜑 ≈ 𝜑 − 1/6𝜑3, cos 𝜑 ≈ 1 − 1/2𝜑2. On the other hand, movement of the ball within the cavity 

should respect the full expressions due to the fact that the ball deflection can reach nearly the “equator” of 

the cavity. This fact prevents to get through the matter by an analytical way, but suitable combination of 

both numerical/analytical procedures is still possible and, moreover, the model presented in this 

contribution does not include any limits of the response amplitudes. 

Authors tried to formulate this problem in the past by a classical way constructing the Hamiltonian 

functional with non-holonomic constraints. However, the resulting Lagrangian governing system provides 

the differential system which is too complicated and its physical interpretation can be multivalent. For 

easier analysis is the problem formulated using Appell-Gibbs function. Its main advantage consists in 

easier problem definition and more transparent introduction of non-holonomic constraints. 

2. Mathematical models 

2.1. Simple planar model 

The dynamic character of the complete structure is modelled by a linear SDOF system represented by a 

total mass 𝑚 (which includes the structure, cavity and the ball) and stiffness 𝐶. The ball with mass 𝑀 is 

moving freely in a vertical plane in a cavity directly attached to the structure, i.e., 2DOF system should be 

investigated as it is outlined in Fig. 1b. For full derivation see (Náprstek et al., 2011).  

                             �̈� + 𝜅𝑏𝜑�̇� + 𝜅𝜔𝑀
2 sin 𝜑 + 𝜅𝜁̈ ⋅ cos 𝜑 = 0            𝜔𝑀

2 =
𝑔

𝜌
 ,       κ =

𝑀𝑟2

𝐽+𝑀𝑟2, (1a) 

 𝜇�̈� cos 𝜑 − 𝜇�̇�2 sin 𝜑 + (1 + 𝜇)𝜁̈ + 𝑏𝑢𝜁̇ + 𝜔𝑀
2 𝜁 = 𝑝(𝑡)          𝜇 =

𝑀

𝑚
 , 𝜔𝑚

2 =
𝑀

𝑚
 . (1b) 

Here 𝑔 it the gravitational acceleration and 𝐽 = 2/5 ⋅ 𝑀𝑟2 is the central inertia moment of the ball.  

The theoretical efficiency of the absorber can be assessed using its frequency characteristics for excitation 

by harmonic force 𝑝(𝑡). However, to relate the planar model to the fully spatial one, only the first 

equation (1a) regarding the ball rolling in the cavity will be used here. The action of the elastic structure 

is replaced by the kinematic excitation 𝜁̈ = 𝜁0 ⋅ sin 𝜔𝑡. 

a)              b)               c)  

Fig. 1: a) Outline of the ball absorber; b) Scheme of the simplified 2D model; c) The spherical pendulum. 

699



 

 4 

2.2. Appell-Gibbs approach to the full spatial model 

In the spatial model of the ball absorber (Fig. 1a) is the Appell-Gibbs approach used to formulate the 

governing non-linear differential system. The basis is the Appell function (often referred to as an energy 

acceleration function), which is defined as a function of six components characterizing motion of the stiff 

body in 3D: 

 𝑆  =  
1

2
𝑀(�̈�𝐺𝑥

2 + �̈�𝐺𝑦
2 + �̈�𝐺𝑧

2 ) +
1

2
𝐽(�̇�𝑥

2 + �̇�𝑦
2 + �̇�𝑧

2),  (2) 

where 𝑀 is the mass of the ball, 𝐽 = 2/5 ⋅ 𝑀𝑟2 central inertia moment of the ball with respect to its 

centre, 𝜔_ angular velocities of the ball with respect to its centre, 𝑢G_ displacements of the ball centre with 

respect to absolute origin 𝑂, 𝑢C_ displacements of the contact point with respect to origin 𝑂, and 𝑢A_ 

prescribed movement of the cavity with respect to origin 𝑂.  

Following the detailed derivation of the equations of motion the governing system reads (Náprstek and 

Fischer, 2016) 

 �̇�𝐶𝑥 = 𝜔𝑦(𝑢𝐶𝑧 − 𝑅) − 𝜔𝑧𝑢𝐶𝑦  (3a) 

 �̇�𝐶𝑦 = 𝜔𝑧𝑢𝐶𝑥 − 𝜔𝑥(𝑢𝐶𝑧 − 𝑅)  (3b) 

 �̇�𝐶𝑧 = 𝜔𝑥𝑢𝐶𝑦 − 𝜔𝑦𝑢𝐶𝑥             (3c) 

 𝐽𝑠𝜌�̇�𝑥 = − (�̈�𝐴𝑦 + 𝜌(𝜔𝑧�̇�𝐶𝑥 − 𝜔𝑥�̇�𝐶𝑧)) (𝑢𝐶𝑧 − 𝑅) − 𝑢𝐶𝑦 (𝑔 + 𝜌(𝜔𝑥�̇�𝐶𝑦 − 𝜔𝑦�̇�𝐶𝑥)) − 𝜌𝐷𝐺𝑥/𝑀  (4a) 

 𝐽𝑠𝜌�̇�𝑦 = − (�̈�𝐴𝑥 + 𝜌(𝜔𝑦�̇�𝐶𝑧 − 𝜔𝑧�̇�𝐶𝑦)) (𝑢𝐶𝑧 − 𝑅) + 𝑢𝐶𝑥 (𝑔 + 𝜌(𝜔𝑥�̇�𝐶𝑦 − 𝜔𝑦�̇�𝐶𝑥)) − 𝜌𝐷𝑦/𝑀  (4b) 

 𝐽𝑠𝜌�̇�𝑧 = − (�̈�𝐴𝑥 + 𝜌(𝜔𝑦�̇�𝐶𝑧 − 𝜔𝑧�̇�𝐶𝑦)) 𝑢𝐶𝑦 − (�̈�𝐴𝑦 + 𝜌(𝜔𝑧�̇�𝐶𝑥 − 𝜔𝑥�̇�𝐶𝑧)) 𝑢𝐶𝑥 − 𝜌𝐷𝑦/𝑀        (4c) 

where:  𝐽𝑠 =  (𝐽 + 𝑀𝜌2 𝑅2)/(𝑀𝜌2),  𝜌 = 1 − 𝑟/𝑅 and terms 𝐷𝐺_ cover influence of damping. 

Damping in the contact point has to be treated separately for rolling and spinning component. Supposing 

that no slipping arises in the contact, the dissipation process can be approximated as proportional to the 

relevant components of the angular velocity. Thus, the damping terms in Eqs. (4) include coordinate 

transformation from local coordinates of the ball distinguishing rolling and spinning movement.  

2.4. Comparison of the models 

Although the models aim to describe a single real system, their difference is more than dimensional 

settings. The simplified model was set up to describe interaction of the ball absorber and the structure, its 

auto-parametric character originates from coupling between the ball, cavity and elastic structure. The 

spatial model in the current state describes only the movement of the ball in the cavity and assumes only 

the kinematic excitation of the cavity. The auto-parametric character follows from interaction of the 

individual 𝑥 and 𝑦 components. Hence only the equation (1a) from the planar model can be directly 

related to the 3D model. 

In order to show correspondence of the full model (3, 4) and Eq. (1a) the following conditions will be 

assumed, which assure the planar movement of the ball in the cavity: 

 𝑢𝐶𝑦 = 0, 𝜔𝑥 = 0, 𝜔𝑧 = 0 (5) 

Introducing conditions (5) into Eqs (3,4) (without damping), three equations are fulfilled trivially and 

only Eqs (3a,3c,4b) remain active. Elimination of �̇�𝑦 from Eq. (4b) using the derived Eq. (3a) and 

substitution of the geometric relation 𝑢𝐶𝑧 = 𝑅 − √(𝑅2 − 𝑢𝐶𝑥
2  ) gives the single equation which involves 

only 𝑢𝐶𝑥: 

 �̈�𝐶𝑥 =
𝑀𝜌

𝐽+𝑀𝜌2𝑅2 ((𝑢𝐶𝑥
2 − 𝑅2)�̈�𝐴𝑥 − 𝑔𝑢𝐶𝑥√𝑅2 − 𝑢𝐶𝑥

2 ) −
𝑢𝐶𝑥�̇�𝐶𝑥

2

𝑅2−𝑢𝐶𝑥
2  (6) 

Transformation of the translational motion to rotation 𝑢𝐶𝑥 = 𝑅 sin 𝜑 restores the equation (1a). 

Performance of both models is compared in Fig. 2. The system parameters used: 𝑀 = 1, 𝑅 = 1, 𝑟 = 1/2, 

the excitation amplitude  𝜁0 = 0.1 and damping: 𝑏𝜑 = 𝛼 = 0.1, 𝛽 = 0.01. Symbols 𝛼, 𝛽 are the damping 

coefficients in the spatial model for rolling and spinning, respectively. The left plot shows the positions of 

the turning points in lateral direction depending on the excitation frequency 𝜔. Because the ball in the 

maximal motion crosses the equator of the cavity, the actual extremal value of the coordinate can become 
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smaller for increasing amplitudes (cf. concave part of the curve in the left plot). The resonance curve 

corresponding to the planar model is shown in the left plot as the thick solid line a1 – a3 with thick dotted 

overhanging part a2. The thin dotted vertical lines delimit area where the resonance curve shows two 

stable solutions, lines a1, a2. The curves b1 – b6 in the both plots correspond to the spatial model. The parts 

b1 – b4 show planar (semi-trivial) solution which can be directly related to the result of the planar model. 

The branches b5 and b6 correspond to spatial periodic (b6) or chaotic (b5) movement of the ball, as can be 

seen comparing both plots. It is worth to note that the periodic branch b6 continues over right border of 

the plot. It represents stable cycling which approaches equator of the cavity for increasing excitation 

frequency. From the left part of Fig. 2 can be seen that the planar model underestimates response and 

width of the resonance area. Moreover, it cannot encompass the upper spatial branch of the response (b6), 

which can have devastating effect on the structure. 

3. Conclusions 

Two approaches to modelling of behaviour of the ball-style tuned mass damper were presented and 

compared. Whereas the non-linear planar approach models the ball in the cavity using a single DOF, the 

spatial one comprises six degrees of freedom with three non-holonomic constraints. The equations of the 

motion in the spatial model of the ball are derived using the Appell-Gibbs function of acceleration energy. 

The Appell-Gibbs formulation of a non-holonomic system dynamics approved excellent efficiency in 

comparison with a conventional way being based on Lagrangian differential system and non-holonomic 

constraints adjoined via indefinite Lagrange multipliers. The resulting system has an auto-parametric 

character, it permits to formulate the semi-trivial (planar) solution. The models were numerically analysed 

with respect to harmonic horizontal excitation. The interval of frequencies leading to instability of the 

semi-trivial solution was shown and studied and its dangerous character was pointed out. 
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Fig. 2: Resonance behaviour of planar and spatial models. Maximal responses in lateral (left)  

and transversal (right) direction. Planar model – thick lines, spatial model – thin lines and dots. 
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