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Abstract: Numerical results obtained from the application of a three-equation model for free surface flows 

are presented in the paper. The compressible two-phase flow model is suitable for complex free surface flow 

simulations that can, for example, include breaking waves. Compared to commonly used shallow water 

models, the model described in the paper offers certain advantages and wider applicability as it can deal 

with problems associated with complex interfaces. On the other hand, it should be noted that the model 

describes only flow field of one phase and the solution of pressure field is significantly simplified. Derived 

from the seven-equation Baer-Nunziato model and completed with the Tait equation of state, it consists of 

mass and momentum evolution equations in conservative form and of an advection equation for volume 

fraction in non-conservative form. A numerical code based on the finite volume method was developed, in 

which the inviscid numerical flux is approximated by an AUSM scheme. For spatial discretization of the non-

conservative term contained in the model, an AUSM-based scheme is applied. The developed algorithm was 

successfully verified by a well-known dambreak test and further a bubble ascension problem was solved.  

Keywords:  Free surface flow, Three-equation model, AUSM scheme, Finite volume method. 

1. Introduction 

Multi-phase flow phenomenons occur frequently in nature as well as in human-impacted activities such as 

industry. Considering their global significance, it is, therefore, useful to purse their computer modeling. 

Especially free surface flows need to be solved, which often include flows in open channels and ducts and 

propagation of waves on liquid surface. Currently there are many significantly different techniques, which 

were developed to solve free surface flow problems. The choice of an appropriate model depends on the 

degree of problem simplification. Two classes of models based on the finite volume method are usually 

distinguished: the interface tracking methods, which use boundary-fitted grids to precisely capture the 

free surface, and the interface capturing methods, which use a stationary grid, and as such are unable to 

describe the interface as sharp boundary (e.g. the MAC and VOF methods). Additionally, other efficient 

methods are developed such as the smoothed particle hydrodynamics or the multiphase lattice Boltzmann 

methods. 

The main objective of this paper is to demonstrate the applicability of a simple three-equation model for 

the solution of complex free surface flow problems. For this purpose, a two-phase model proposed in the 

paper Dumbser (2011) is introduced and derived from a seven-equation model, which was designed by 

Baer-Nunziato (1986) for the modeling of compressible detonation two-phase waves. The numerical 

solution of the aforementioned flow problems is carried out by in-house computational software based on 

the finite volume method. The developed code was tested for the dambreak and bubble ascension 

problems. A comparison between the obtained numerical results and the sample results are presented. 

2. Mathematical model 

The three-equation model employed in this paper belongs to a class of Eulerian interface capturing 

methods, in which an amount of tracked fluid per volume is defined by the volume fraction α determined 
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from advection equation. The described model is applicable for the description of fluid flow with free 

surface, wherein the second phase is negligible (vacuum or fluid with a significantly lower density). By 

contrast, the approach is not suitable for solving dispersed flows, sedimentation and thermodynamics 

problems because of its characteristics and due to performed simplifications. 

The original Baer-Nunziato model contains conservation equations of mass, momentum and energy for 

both phases and an advection equation of volume fraction. In this paper, the model is reduced following 

various simplifications proposed by Dumbser (2011). As mentioned above, the three-equation model 

completely neglects the secondary phase, making it possible to omit all the evolution equations belonging 

to the secondary phase as well as the corresponding variables from the set of equations. Additionally, it is 

necessary to determine appropriate values of unknown parameters at the interface, i.e., the interface 

pressure 𝑝𝐼 and the interface velocity vector 𝒗𝐼. The interface pressure is always kept on atmospheric 

pressure (𝑝𝐼 =  𝑝2 =  𝑝𝐴𝑇𝑀 = 0 𝑃𝑎), when choosing that all pressures value are relative to the 

atmospheric one. The interface velocity, which corresponds to the rate of advection of the volume 

fraction, is set to be equal to the velocity of the primary phase (𝒗𝐼 =  𝒗1). In other words the interface 

propagates along with the primary fluid. This option is well-suited for free surface flow problems. The 

system was closed with the simple Tait equation of state for the primary phase 

 𝑝 = 𝐾 ((𝜌 / 𝜌0)𝛾 − 1), (1) 

which directly relates the pressure 𝑝 and the density 𝜌. For more information, see, for example, the work 

MacDonald (1966). 𝐾, 𝛾 are constants affecting the compressibility of the fluid and 𝜌0 is the density at 

the reference pressure. The determination of speed of sound uses a common formula, which is valid for 

general equation of state during isentropic process. A major advantage of this formulation is that the 

density is calculated directly from the corresponding evolution equations and afterwards the pressure is 

determined using the equation of state in the simple algebraic form. This approach makes the energy 

equation unnecessary and enables us to omit it from the final set of equations. The resulting mathematical 

model in two dimensions can be written as 

  
𝜕

𝜕 𝑡
(𝛼 𝜌) +  

𝜕

𝜕 𝑥
(𝛼 𝜌 𝑢) +  

𝜕

𝜕 𝑦
(𝛼 𝜌 𝑣) = 0, (2) 

  
𝜕

𝜕 𝑡
(𝛼 𝜌 𝑢) + 

𝜕

𝜕 𝑥
(𝛼 (𝜌 𝑢2 + 𝑝)) +  

𝜕

𝜕 𝑦
(𝛼 𝜌 𝑣 𝑢) = 0, (3) 

  
𝜕

𝜕 𝑡
(𝛼 𝜌 𝑣) +  

𝜕

𝜕 𝑥
(𝛼  𝜌 𝑢 𝑣) + 

𝜕

𝜕 𝑦
(𝛼 (𝜌 𝑣2 + 𝑝)) = 𝛼𝜌𝑔, (4) 

  
𝜕

𝜕 𝑡
𝛼 +  𝑢

𝜕

𝜕 𝑥
𝛼 +  𝑣

𝜕

𝜕 𝑦
𝛼 = 0, (5) 

where 𝑢, 𝑣 denote the velocity components and the independent variables of space and time are labelled 

as 𝑥, 𝑦 and 𝑡, respectively. The source term on the right hand side of Eq. (4) represents the gravitational 

force per unit volume with the acceleration of gravity 𝑔. The nonlinear system of Eqs. (2) – (5) is 

hyperbolic when the fluid density is positive (𝜌 > 0) and the volume fraction is 0 < 𝛼 < 1. This means 

that the primary phase or even more the neglected secondary phase cannot vanish within whole domain. 

Under these conditions, eigenvalues {𝑢 − 𝑎, 𝑢, 𝑢, 𝑢 + 𝑎} and {𝑣 − 𝑎, 𝑣, 𝑣, 𝑣 + 𝑎} are real. 

3. Numerical method 

With the goal to examine the suitability of the presented model for free surface flow simulations, a 

numerical code written in Matlab was developed. The finite volume method was used for spatial 

discretization of the system of equations. The inviscid numerical flux was approximated by the first order 

scheme in order to damp instabilities of the two-phase flow model. Specifically, an AUSM scheme was 

used due to its simplicity, efficiency, stability and accuracy, for more information see for example papers 

Evje (2003) or Paillére (2003). The numerical flux vector through the 𝑘-th edge belonging to the cell 𝐿 

with the adjacent cell 𝑅 with the unit vector of the outward normal [𝑛𝑥
𝑒 ,  𝑛𝑦

𝑒 ] is then defined as 

  𝑭𝑘
𝐴𝑈𝑆𝑀 =  

𝑀𝐿𝑅

2
(𝒘𝐿𝑎𝐿 +  𝒘𝑅𝑎𝑅) −  

|𝑀𝐿𝑅|

2
(𝒘𝑅𝑎𝑅 −  𝒘𝐿𝑎𝐿) + 𝑃𝐿𝑅 [0, 𝑛𝑥

𝑒 , 𝑛𝑦
𝑒 , 0]

𝑇
 , (6) 

where 𝑀𝐿𝑅(𝑀𝐿
𝑛, 𝑀𝑅

𝑛) and 𝑃𝐿𝑅(𝑀𝐿
𝑛, 𝑀𝑅

𝑛, 𝑝𝐿 , 𝑝𝑅 , 𝛼𝐿 , 𝛼𝑅) represent the splitting functions. Unlike the 

approximate Riemann solvers or the characteristic flux schemes, the AUSM scheme does not require any 
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characteristic analysis. This is a significant advantage for two-phase flow simulations, which enables us 

to use the AUSM scheme in a whole range of different two-phase models. 

For numerical solution, the advection equation for volume fraction (5) in the non-conservative form 

presents a certain complication. For this reason, it was rewritten into a new form 

  
𝜕

𝜕 𝑡
𝛼 +  

𝜕

𝜕 𝑥
(𝛼 𝑢) + 

𝜕

𝜕 𝑦
(𝛼 𝑣) − 𝛼 ( 

𝜕 𝑢

𝜕 𝑥
+ 

𝜕 𝑣

𝜕 𝑦
) = 0, (7) 

where the second and the third additional terms form basically a conservative convective flux of volume 

fraction and the fourth term is a non-conservative source term. Note that Eq. (7) was utilized in the 

numerical code instead of Eq. (5). The AUSM scheme was used for the inviscid flux discretization of the 

entire set of Eqs. (2) – (4), (7). The non-conservative term in Eq. (7) was discretized in the sense of the 

AUSM scheme due to consistency. The entire coupled system of Eqs. (2) – (4), (7) was time-iterated by 

an explicit two stage Runge-Kutta scheme. 

4. Test cases 

The developed numerical code was verified by the two-dimensional test case – the dambreak with bottom 

step into a wet bed area. The computational domain 𝛺 =  ([−5;  5] × [0;  3])\([0;  5] × [0;  0.2]) m is 

divided with an unstructured triangular mesh. The domain initially containing the fluid (𝛼 = 0.95) is 

𝛺𝐿
𝐼𝐶 =  ([−5;  0] × [0;  1.46]) ∪ ([0;  5] × [0.2;  0.51]) m. The gravity acceleration in the 𝑦-direction is 

𝑔 =  −9.81 m/s2 and the parameters of the Tait equation (1) are artificially set as 𝛾 = 1,  
 𝜌0 = 1000 kg/m3, 𝐾 = 0.637 MPa to improve the solution convergence. The initial velocities are 

𝑢 = 𝑣 = 0 m/s and the pressure is set to be equal to the hydrostatic one with zero pressure level at height 

ℎ = 1.46 m. A wall boundary condition is applied to all boundaries of the computational domain. The 

parameters of the performed numerical simulation are the same as the parameters in the original work 

Dumbser (2011). In doing so, the purpose is to compare the results obtained using our developed solver 

with the published results, which were achieved with discontinuous Galerkin schemes. Both simulations 

used unstructured grids of comparable quality. The comparison of volume fraction results is shown in 

Fig. 1: developed numerical code – isolines, Dumbser (2011) – blue/red field (trimming used as  
𝛼 < 0.5 → blue, 𝛼 > 0.5 → red), shallow water equations – thick black line. 

 

Fig. 1: Dambreak with wet step: volume fraction at the time t = 1 s. 

Further, the suitability of the three-equation model for the description of the bubble ascension problem 

was analyzed. This task is very different from the problem of breaking waves, for which the model was 

primarily designed. In this case, the bubble rises under the influence of gravity acting on the surrounding 

fluid, making the phase interface very complex. Initially, the circular bubble 

𝛺𝐵𝑢𝑏
𝐼𝐶 =  𝑐𝑖𝑟𝑐([1;  0.3], 0.2) m is at rest in a closed box 𝛺 =  ([0;  2] × [0;  2]) m filled with fluid. The 

gravity acceleration in the 𝑦-direction is 𝑔 =  −9.81 m/s2 and the parameters of the Tait equation are the 

same as in the previous case. The initial pressure field has a hydrostatic profile with zero pressure level at 

height ℎ = 1 m. The results of numerical simulations carried out by the developed software are shown in 

the Fig. 2 (left) at time 𝑡 = 1 s. For illustration, Fig. 2 (right) shows the results from the paper Murrone 

(2005). Note that Murrone and Guillard used a more sophisticated five-equation model, different 

788



 

 5 

parameters of the Tait equation of state and a finer mesh. In our case, the simulation was performed on a 

computational grid with square cells. The results are entirely symmetrical until approximately the time 

𝑡 = 0.5 s, when the symmetry is broken probably due to accumulation of numerical errors. 

 

Fig. 2: Bubble ascension problem: volume fraction at the time t = 1s. 

5.  Conclusions 

The results presented in this paper demonstrated the applicability of the three-equation model for the 

solution of free surface flow problems using FVM and AUSM scheme. Compared to other high-order 

solvers (e.g., DGFEM), our algorithm exhibits higher artificial viscosity, but is able to capture the initial 

breaking wave better than the shallow water equations model, see Fig. 1. Good results were also achieved 

for the bubble ascension problem, which demonstrated the ability of the model to handle complex free 

surface interfaces. 
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