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Abstract:  The problem of the crack emanating from the interphase region of the circular inclusion is 

investigated. The problem combines an application of dislocation distribution technique for a crack 

modelling and the method of boundary integral equations to approximate the loading along the boundary of 

the domain containing an inclusion. The topological derivative method provides the combination of both 

approaches and results to the evaluation of the energy release rate of the arbitrary oriented microcrack 

emanating from the inclusion and matrix interphase. The fundamental solution intended to the boundary 

integral method such as the continuously distributed dislocation technique is based on the application of 

Muschelishvili complex potentials in the form of the Laurent series. The coefficients of the series are 

evaluated from the compatibility conditions along the interfaces of inclusion, interface and matrix. 
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1. Introduction 

The paper takes on the scheme of the energy release rate 𝐺 associated with a finite small crack initiation 

at any boundary location based on the topological derivative method, Silva et al. (2011). It is supposed 

that the crack is initiated and emanating from the interface region between the inclusion and arbitrarily 

loaded finite matrix in the studied problem. The crack initiation from some tip of the sharp shaped 

inclusion can be appeared in the silicate-based composites. The applied simplified mathematical model 

can be used to study the influence of the material mismatch of the inclusion/matrix interphase to the 

fracture toughness of this composite even that the mathematical simplification suppresses the sharpness of 

the inclusion. The topological derivative field indicates the variation of a response functional when an 

infinitesimal hole is introduced in the body. The response functional is the total potential energy in the 

discussed problem. The kernel of the mathematical scheme is the fundamental solution of the unit point 

force or edge dislocation interacting with an inclusion and an interphase, Cheeseman et al. (2001). This 

fundamental solution is applied to the approximation of the loaded boundary of the finite uncracked 

matrix containing an inclusion such as to model the crack. There is many ways to model the uncracked 

matrix with the inclusion and its interphase. The most common tool is the finite element method, but due 

to the modesty of the external domain shape and the emphasis on the influence of the inclusion interphase 

on the near stress distribution along the inclusion in the matrix, the boundary integral method was used. 

The boundary integral method allows one to rather precise evaluate the stress and strain distribution in the 

matrix near the inclusion interphase independently of the quality of the domain and especially thin 

interphase mesh. The second application of the bellow mentioned fundamental solution is the crack model 

via the continuously distributed dislocation technique, Hills et al. (1996). The condition that the crack 

faces have to be stress free, the continuously distributed dislocations technique leads to the solution of the 

integral equation with the Cauchy type singular kernel. The advantage of this method is the simply 

evaluation of the stress intensity factor of the crack as the limiting value of Jacobi polynomials which are 
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used to interpolate the continuous array of dislocations along the crack. The asymptotic analysis combines 

both solutions, i.e. the non-cracked finite domain and cracked infinite domain. It is based on the stress 

composite expansion, evaluating of the energy momentum tensor and approximation of the energy release 

rate for any crack size by means of topological derivative, Silva et al. (2011).  

 

Fig. 1: The geometry of the studied problem. 

2. Topological derivative for cracked body 

It is known that the shape sensitivity of the total potential energy 𝜓 with respect to crack length 𝜀 is given 

by the energy release rate, Silva et al. (2011), 

 𝐺(Ω𝜀) =
𝑑

𝑑𝜀
𝜓(Ω𝜀), (1) 

where the derivative is meant in the shape sense and Ω𝜀 is the domain with a small crack in the matrix 

with boundary 𝜕Ω𝜀 = 𝜕Ω⋃𝛾𝜀 with 𝛾𝜀 being the crack boundary and 𝜕Ω = ⋃ 𝜕Ω𝑖𝑖=1,2,3 , where 𝜕Ω𝑖 are  

matrix and interface boundary between matrix or inclusion and their interphase, Fig. 1. Then the total 

potential energy is given by 

 𝜓(Ω𝜀) =
1

2
∫ ∇𝑠

Ω𝜀
𝒖𝜀: 𝑻𝜀d𝑉 − ∫ 𝒕𝑃 ∙ 𝒖1𝜀𝜕Ω1

d𝑆 − 

 − ∫ (𝑻1𝜀𝐧𝟐 ∙ 𝒖1𝜀 + 𝑻2𝐧𝟐 ∙ 𝒖2)
𝜕Ω2

d𝑆 − ∫ (𝑻2𝐧𝟑 ∙ 𝒖2 + 𝑻3𝐧𝟑 ∙ 𝒖3)
𝜕Ω3

d𝑆. (2) 

In the above the index 𝜀 denotes the response quantities evaluated on the crack domain, 𝒖 is the 

displacement vector, ∇𝑠𝒖 =
1

2
(∇𝒖 + ∇𝒖𝑇), 𝑻 is the symmetric Cauchy stress tensor and tractions 𝒕𝑃 are 

applied to the boundary 𝜕Ω1. The displacements and stress tensor satisfying the governing equations of 

the linear elasticity on the domain Ω𝜀, 

 div𝑻𝜀 = 0 in Ω𝜀, 𝑻1𝜀𝐦 = 0 on 𝛾𝜀, 𝑻1𝜀𝐧𝟏 = 𝒕𝑃 on 𝜕Ω1, (3) 

 𝑻1𝜀𝐧𝟐 = −𝑻2𝐧𝟐  ∧  𝒖1𝜀 = 𝒖2 on 𝜕Ω2, 𝑻2𝐧3 = −𝑻3𝐧3  ∧  𝒖2 = 𝒖3 on 𝜕Ω3, (4) 

where 𝒎 and 𝒏 are the outward normal to 𝛾𝜀 and 𝜕Ω, respectively. The body forces are neglected and the 

crack faces are assumed to be traction free. The evaluation of the topological derivation (1) leads to the 

relation, e.g. Silva (2011), 

 𝐽(𝚺𝜀) = −
𝑑

𝑑𝜀
𝜓(Ω𝜀) = lim𝑟⟶0 ∫ 𝚺𝜀𝐧 ⋅ 𝒆𝑟𝑑𝑆

𝐵𝑟
, (5) 

where 𝐵𝑟 is a ball of radius 𝑟 centered at the crack tip, 𝒆𝑟 is a unit vector aligned with the crack and 

oriented in the crack growth direction and 𝐽(𝚺𝜀) is the 𝐽-integral joined with the energy momentum tensor 

𝚺𝜀. 

3. Fundamental solution 

The evaluation of the displacement and stress field at the crack tip depends on the knowledge of the 

fundamental solution, i.e. solution describing the interaction between the unit point force or dislocation 
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and the circular inclusion with thin interphase, see Cheeseman et al. (2001). The problem is formulated 

using Muskhelishvili complex potentials in the form of Laurent series, 

 𝜑1(𝑧) = ∑ 𝐴𝑘𝑧𝑘∞
𝑘=1 + ∑ ℎ−𝑘𝑧−𝑘∞

𝑘=1 , 𝜓1(𝑧) = ∑ 𝐵𝑘𝑧𝑘∞
𝑘=1 + ∑ 𝑝−𝑘𝑧−𝑘∞

𝑘=1 , (6) 

 𝜑2(𝑧) = ∑ 𝑞𝑘𝑧𝑘∞
𝑘=−∞ , 𝜓2(𝑧) = ∑ 𝑟𝑘𝑧𝑘∞

𝑘=−∞ , (7) 

 𝜑3(𝑧) = ∑ 𝑠𝑘𝑧𝑘∞
𝑘=1 , 𝜓3(𝑧) = ∑ 𝑡𝑘𝑧𝑘∞

𝑘=1 , (8) 

where the coefficients 𝐴𝑘 and 𝐵𝑘 are known and account for the point force or dislocation singularity. 

The coefficients ℎ−𝑘, 𝑝−𝑘, 𝑞𝑘, 𝑟𝑘, 𝑠𝑘, 𝑡𝑘 are evaluated from the compatibility conditions (4). 

4. Asymptotic analysis 

Assuming the crack length 𝜀 is sufficiently small with respect to the inclusion size 𝑅2 the evaluation of 

the stress tensor 𝑻𝜀(𝒙) at the crack tip and after that the energy momentum tensor 𝚺𝜀 in (5) can be 

provided using the following stress composite expansion, Silva et al. (2011), 

 𝑻𝜀(𝒙) = 𝑻(�̂�) + �̃�(𝒚) + 𝑂(𝜀), (9) 

where �̂� ∈ 𝜕Ω2  is reference point of matrix/interphase boundary from which the crack emanates and  

𝒚 = 𝒙/𝜀 is the scaled position vector. The outer stress 𝑻(�̂�) is evaluated along the crack position in the 

matrix without the crack and under the external load 𝒕𝑃. The stress 𝑻(�̂�) is observed from the Hooke’s 

law and the displacement solution of the well-known boundary integral equations appearing in the 

boundary value problem, Brebbia et al. (1984), 

 𝑐(�̂�)𝒖(�̂�) + ∫ 𝒕∗(�̂�, 𝝃) ⋅ 𝒖(𝝃)𝑑𝑆(𝝃)
𝜕Ω1

= ∫ 𝒖∗(�̂�, 𝝃) ⋅ 𝒕𝑷(𝝃)𝑑𝑆(𝝃)
𝜕Ω1

 (10) 

where the displacements 𝒖∗(�̂�, 𝒙) and tractions 𝒕∗(�̂�, 𝒙) follow from the Muskhelishvili complex 

potentials (6), (7) and (8). They are the response at the point 𝝃 correspond to a unit point force acting at 

the point �̂�. The inner stress �̃�(𝒚) annihilates the leading order term of the tractions 𝑻(�̂�) on the crack 

faces. Because the inner stress is expressed in terms of the stretched position vector 𝒚, points 𝒚 far away 

from the crack correspond to points 𝒙 only in a small distance from �̂�. Hence the inner boundary value 

problem is that of the infinite domain with inclusion and interphase of radius 𝑅2/𝜀 and 𝑅1/𝜀, 

respectively, from which emanates the crack of unit length to the matrix. Using the distributed dislocation 

technique, Hills et al. (1996), the inner stress components �̃�𝑖𝑗 are given by, 

 �̃�𝑖𝑗(𝒚) = ∫ [𝑏𝜃(𝑡)𝐾𝑖𝑗𝜃(𝛼, 𝒚, 𝑡) + 𝑏𝑟(𝑡)𝐾𝑖𝑗𝑟(𝛼, 𝒚, 𝑡)]𝑑𝑡
1

0
, (11) 

where 𝛼 is crack orientation, see Fig. 1, and kernels 𝐾𝑖𝑗𝜃 and 𝐾𝑖𝑗𝑟 are developed from complex potentials 

(6), (7) and (8). The unknown dislocation densities 𝑏𝜃 and 𝑏𝑟 are obtained in such a way, that the 

negative value of 𝑻(�̂�) is substituted to the left hand side of (11) for 𝒚 ∈ 𝛾1. Using the polar coordinate 

system, the inner stress field near the crack tip can be expressed in terms of the Williams asymptotic 

series, 

  �̃�(𝑟/𝜀, 𝜃) = √
𝜀

𝑟
𝐴1𝑭1(𝜃) + 𝐴2𝑭2(𝜃) + √

𝑟

𝜀
𝐴3𝑭3(𝜃) + 𝑂(𝑟). (12) 

Only the leading term of the expression above contributes to 𝐽(𝚺𝜀). This term is proportional to the 

squared values of stress intensity factors. Hence, one can get from (1) and (5), 

 𝐺(𝜀, �̂�, 𝛼) =
𝜀

𝐸
[𝐾𝐼

2(�̂�, 𝛼) + 𝐾𝐼𝐼
2(�̂�, 𝛼)]. (13) 

5. Numerical example 

The numerical examples show the intermediate results of the character of the convergence of the series 

appearing in the fundamental solution (6), (7) and (8) and its application to the boundary integral method 

(10) with respect to its dependency on the material properties of the inclusion interphase. Fig. 2a shows 

the convergence of the displacement 𝑢𝑦 of the fundamental solution along the 𝑥-axis for various degree 𝑛 

of the Laurent series. The unit force is oriented in the direction of 𝑥-axis and it is situated at the point 
[30, 30] mm. The radius of the inclusion and its interphase are 10 and 11 mm, respectively. The Young 
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modulus of the matrix, interphase and inclusion are 0.8E+11, 0.2E+11 and 0.2E+12 MPa and Poisson’s 

ratios are 0.15, 0.2 and 0.3, respectively. It can be seen that for this randomly chosen values, except the 

𝑛 = 2 degree of the Laurent series, the curves cannot be distinguished especially with respect to the FEM 

solution. Fig. 2b shows the influence of the interphase material on the 𝜎𝑥 stress field in the finite domain 

under the tension σx
P = 100 MPa. The domain contains an inclusion with the radius 4 mm with 1mm 

interphase. The width of the domain is 20 mm. The values inside the inclusion are not calculated, but can 

be evaluated form the received values along the boundary 𝜕Ω2. However these values are not necessary 

for the future analysis. It is interesting to point out the inappropriate values near the outer boundary 𝜕Ω1. 

It is a typical behavior of the boundary integral method near the discretized boundary. 

  

Fig. 2: a) The displacement of the fundamental solution; b) The stress 𝜎𝑥 along the 𝑦-axis  

of the finite domain under the tension 𝜎𝑥
𝑃 = 100 MPa. 
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