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Abstract: The simplified mathematical model of dynamic properties of bladed cascade excited by wakes of 

flowing steam from the stationary cascade is derived. Interaction of this kind of forced excitation with aero-

elastic self-excitation described by Van der Pol formula causes origin of flutter and its. running waves. It is 

shown that the velocity, direction of flutter running waves and mode of vibration depend on the blades’ 

number ratio and on kind of self-excitation forces on individual blade or on inter-blade distance.  
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1. Introduction 

Dynamic properties o blades cascades in turbines excited by the aero-elastic effects of flowing gas – 

flutter – have been intensively investigated and published during the several last decades up to the present 

time (Rao, 1991; Rzadkowski, 2007 and Pust, 2011). During experimental investigation of blades flutter 

properties, the existence of running waves was observed and mentioned (Yan, 1990 and Kielb, 2004). 

Comparatively small attention has been given to the explanation what is the cause of origin and properties 

of flutter running waves. Presented paper contains an attempt to reveal the possible impulses, which can 

excite and synchronize the flutter phenomenon. Flutter phenomenon is an intensive self-excited vibration 

of blade cascade structure. There are many types of description of flutter phenomena, however for 

simplicity an expression based on well-known Van der Pol model (Pust, 2016) is used in this study. Two 

modifications of this model are applied. The first one is oriented on self-excited vibration of each 

individual blade, the second one acts on relative motion between two neighboring blades. Different 

blades’ number of rotating and of stator wheels causes the phase delays of excitation forces produced by 

the wakes of gas flow from the stator blades cascade. Consequently, the running waves of forced 

vibration exist, which initiate also the flutter running waves. 

2. Methods 

The dynamic properties of a model of turbine wheel with ten blades and excited by phase delayed 

harmonic forces caused by distorted stream of flowing gas from the stator blades cascade were studied in 

the paper (Pust, 2016) shown in Fig. 1. Another type of graphical presentation computational model of 

turbine blades row is shown in Fig. 2, where the tenth blade is connected with the first blade again by the 

same elastic element. The spring with stiffness k1 [kg.s
-2

] represents elastic properties of disc or of shroud. 

          

 Fig. 1: Model of blade wheel. Fig. 2: Model of blade cascade. 
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Dynamic properties of blades are investigated in the narrow frequency range near the selected blade’s 

eigen-frequency and modeled as a 1DOF system with parameters , ,m k b . The wakes of steam flow from 

stator blades excite the blades on the rotating wheel by external periodic forces. Running periodic forces 

arise if the number rl of blades on rotating wheel differs from the number sl  of blades on stator cascade 

sr ll  . These periodic forces can be simplified to one harmonic component ))1(cos(0   itF , 

where the phase delay   between the neighboring excitation forces depends on ratio rs ll /  according 

the following relations: )1(*2
r

s

l

l
  . As example for rs ll / =9/10 is .5/    

3. Self-excited oscillation 

Steam flowing through the blade-cascade can cause decrease of damping and rise of flutter. Exact 

mathematical model of this aero-elastic phenomenon is very complicated, therefore we will use in this 

study the Van der Pol model, (Pust and Pesek, 2016) described by equation  

 
2(1 ( / ) )G x r x   , (1)  

where G is the aerodynamic force, ,x x  are general displacement and velocity, r is displacement of blade 

at which the aerodynamic force changes its sign, μ gives intensity of this non-linear damping. 

4. Position of flutter activity  

The flowing steam from the stationary blade cascade influence both individual blades and also the 

interaction forces between neighboring blades. These situations can be graphically modelled by different 

positions of points of action. The position of direct self-excitation G on individual blade is depicted in 

Fig. 3. The inter-blades self-excitation G is shown in Fig. 4. 

                                               

 Fig. 3: Blade’s self-excitation. Fig. 4: Inter-blades self-excitation. 

 In the first case it is: ,))/(1( 2

11 iii xrxG    (2a) 

where index i denotes the number of blade. The self-exciting force in the second case is 

 ))()/)((1( 1

2

2121,   iiiiii xxrxxG   (2b) 

5. Vibrations of forced and aero-elastic excitation  

Ten differential equations describe motion of blade cascade 

 ),)1(cos(01,1,19    itFGGGggkxxbxm iiiiiiiii
  (3)  

where ig  describes connections between g blades .,10...,,1)( 11111 yyiyykg iii    

Response curves are computed in the following examples for one blade’s mass, stiffness and damping 

coefficient: m = 0.182 kg, k = 105000 kg.s
-2

, b = 2 kg.s
-1

. The blades’ interconnections stiffness is  

k1 = 1000 kg.s
-2

 and amplitude of external wakes force is F0=1 N with frequency srad /762 . 

815



 

 4 

6. Individual blade self-excitation 

The graphical presentation of influence of forced wake vibration interaction with direct self-excitation Gi 

of individual blades is shown in Fig. 3. There are two damping forces acting on each blade: positive 

structural damping with coefficient b = 2 kg.s
-1

 and negative aero-elastic damping with coefficient 1 . 

Self-excited oscillations can arise if 21  b , but it needs an initial impulse for its expansion. If 

external wake force does not exist (F0 = 0), no self-excited oscillation arises, in spite of high negative 

aerodynamic coefficient 
1 2 2.5 0.5b       as shown in Fig. 5. However, the wakes of steam flowing 

from the stator blade cascade at amplitude F0=1N initiate increase of self-excited vibrations as it is shown 

in Fig. 6 for the same numbers of stator and rotor blades / 1s rl l   and so for 0  . Registered time 

courses of all blades are shown in these figures. The lowest and upper bold line belong to the first blade, 

upper dashed line belongs to the 10
th
 blade. 

                   

 Fig. 5: Self-excitation without initial impulses. Fig. 6: Self-excitation with initiation by wakes. 

If the ratio of stator and rotor blades is / 9 /10s rl l   then / 5    and backward running wave occurs 

as it is seen in Fig. 7. The change of blade’s numbers to / 8 /10s rl l  causes increase of phase shift to 

2 / 5    and the backward running wave velocity is half, the period of one wave’s revolution is 

double, as shown in Fig. 8. The corresponding wave mode contains two cosines forms, as distinct from 

the case in Fig 8, where the form is described by one cosine form. 

If the ratio of stator and rotor blades numbers is greater than 1 e.g. / 11/10s rl l   then / 5     and 

running waves have forward direction as it is seen in Fig. 9. 

          

 Fig. 7: Backward waves at / 5   . Fig. 8: Backward waves at 2 / 5   . 

7. Inter-blades excitation  

The behavior of running waves in the case that the flowing steam from the stationary blade cascade 

influences the interaction between neighboring blades (see Fig. 4) distinguishes from the properties of 

blades’ cascade with the individual blade self-excitations. 

The dynamic properties of rotor blade cascade with / 9 /10s rl l   ( / 5   ) are shown in Fig. 10. The 

mode of vibration has five cosine forms on the periphery and there exist two running waves forward and 
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backward – designated by arrows in figure. The velocities of these running waves are five times lower 

than running waves depicted in Fig. 7 or 9.
 
 

               

 Fig. 9: Forward waves at / 5    . Fig. 10: Waves at inter-blades self-excitation.  

8. Conclusions  

The presented paper deals with investigation and ascertaining of conditions for origin of flutter in turbine 

including its running waves.  

It is shown that the ratio of blades’ numbers of stationary and of rotating disk influences due to the wakes 

of gas flow the phase shift between neighboring blades and consequentially also direction and velocity of 

forced or flutter running waves. The flutter self-excitation is realized by Van der Pol model. 

There are different blade-cascade responses in the cases when the self-exciting effect of flowing steam 

acts direct on individual blades or by interaction forces between neighboring blades. The running 

velocities as well as modes of vibration in both cases are different. 

Presented study is the first stage of deeper analysis. In the future the bladed cascade will be improved by 

addition of torsion DOF and the self–excitation elements will be modified according to the results of 

prepared experiments. 
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