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Abstract: One mass model of the vocal folds with three degrees of freedom in 2D space was created and 

used to simulate the movement of the vocal folds. Vocal folds are modeled as a solid mass stored flexibly in 

2D. The model is excited by aerodynamic forces. The flow is solved by analytical model incompressible and 

non-viscous fluid with constant flow. In case of close of the glottis are aerodynamic forces replaced by Hertz 

model of the contact forces. Movement equations are solved by numerical method. The model allows to solve 

the movement of the vocal folds in the time domain, pressure field acting on the vocal folds or contact 

pressures. 
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1. Introduction 

Vocal folds (VF) are a fundamental part of the human vocal tract. They create a source voice that is 

modulated in the vocal tract. This creates a human voice. That’s one theory of phonation (Fant, 1970). VF 

are also one of the main source of voice failures. They are mechanically strong and cyclically loaded. VF 

are sensitive to wear and pathological changes. That is one reason why they are intensively investigated. 

Research of VF may in the future allow the production and implementation of synthetic VF to human 

larynx. This will improve the lives of people with voice disorders. 

VF research began in middle of the last century the first successful mathematical models are dual mass 

models. Dual mass models are simple they have 2 DOF and are used today. Team of authors (Horáček et 

al., 2002) created the single body model with 2 DOF (transverse displacement and rotation) his advantage 

is a fully parametric geometry of VF profile. Allows to study the influence of geometry on mechanical 

properties. This mechanical model is linear and does not allow to study the self-excited oscillations. In 

2005 was model generalized to enable simulation of nonlinear self-excited oscillation. This work is based 

on the work (Horáček et al., 2005) in order to generalize the mechanical model by adding a longitudinal 

movement (3 DOF). 

2. Model of VF 

Single body model is composed of a body in 2D space (Fig. 1). The shape of the body is defined by 

independent function a(x) that defines the profile. The body is flexibly attached to the frame by springs 

and dampers. The springs and dampers are placed in the center of mass of the profile. This makes the 

stiffness and damping matrix diagonal. Mass characteristic are determined by direct integration profile. 

The values of stiffness and damping may be prescribed directly or prescribe natural frequency and the 

width of the resonance peaks and that define the stiffness and damping. 

 𝑴�̈� + 𝑩�̇� + 𝑲𝑽 = 𝑭, (1) 
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where 

 𝑴 = [
𝑚 0 0
0 𝑚 0
0 0 𝐼

] , 𝑩 = [

𝑏𝑥 0 0
0 𝑏𝑦 0

0 0 𝑏𝑡

] , 𝑲 = [

𝑘𝑥 0 0
0 𝑘𝑦 0

0 0 𝑘𝑡

] , 𝑽 = [

𝑥𝑇

𝑦𝑇

𝜑
] , 𝑭 = [

𝐹𝑥

𝐹𝑦

𝑀

].  

 

Fig. 1: Solved mechanical model of VF with 3 DOF. 

2.1. Excitation of model 

The main source of excitation VF are aerodynamics forces of the air flow. Aerodynamics forces are 

determined by integration of pressure field. The air is replaced by an ideal fluid. To obtain the pressure 

field is needed to get the velocity field. The pressure and velocity fields are divided into time-constant 

and fluctuation component. Time-constant component can be chosen freely by using relations (3, 5). 

 𝑈(𝑥, 𝑡) = 𝑈(𝑥) + �̃�(𝑥, 𝑡) (2) 

 𝑈(𝑥) =
𝐻0𝑈0

𝐻0−𝑎(𝑥)
 (3) 

 𝑃(𝑥, 𝑡) = 𝑃(𝑥) + 𝑝(𝑥, 𝑡) (4)  

 
1

2
𝜌𝑈

2
(𝑥) + 𝑃(𝑥) = 𝑐𝑜𝑛𝑠𝑡 (5)  

The basic equation of fluid mechanics is the continuity equation. For used fluid model and nonstationary 

channel cross has the form (6). Where U(x,t) is the speed and H(x,t) is the channel height. The height of 

the channel (7) is derived from the basic height H0, VF profile a(x) and the position of the VF w(x,t). 

Parameters V1, V2, V3 are the elements of the vector V. 

 
𝜕𝐻(𝑥,𝑡)

𝜕𝑡
+

𝜕(𝐻(𝑥,𝑡)𝑈(𝑥,𝑡))

𝜕𝑥
= 0 (6) 

 𝐻(𝑥, 𝑡) = 𝐻0 − 𝑎(𝑥) − 𝑤(𝑥, 𝑡) (7) 

 𝑤(𝑥, 𝑡) = 𝑉2(𝑡) + 𝑉3(𝑡)(𝑥 − 𝑉1(𝑡)) (8) 

The solution of velocity in the glottis (9) was founded by modifying equations. Elements i1-i7 are function 

of position. Was used boundary condition at the inlet to the larynx  �̃� is zero. 

 �̃�(𝑥, 𝑡) = 𝑖1𝑉2 + 𝑖2𝑉3 + 𝑖3𝑉1𝑉3 + 𝑖4�̇�2 + 𝑖5�̇�3 + 𝑖6𝑉1�̇�3 + 𝑖7𝑉3�̇�1 (9) 

The equation of motion for used fluid model is 1D Euler equation (10) is solved after substitution 

decomposition of pressure and velocity fields. To the solution was used boundary condition �̃� at the 

output of the larynx is zero. The shape of the solution (11) is formally identical to (9). The solution is the 

sum of multiply time functions (𝑽𝒑(𝑡)) with space functions (𝑱(𝑥)). Both vectors have 39 elements. 

Column vector 𝑽𝒑(𝑡) containing different combinations of the elements of 𝑽, �̇�, �̈�. Using a pressure field 

(11) we can determine the forces and moment acting on the VF. 
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 𝜌
𝜕𝑈(𝑥,𝑡)

𝜕𝑡
+ 𝜌𝑈(𝑥, 𝑡)

𝜕𝑈(𝑥,𝑡)

𝜕𝑥
+

𝜕𝑃(𝑥,𝑡)

𝜕𝑥
= 0 (10) 

 𝑝(𝑥, 𝑡) = 𝑱(𝑥)𝑽𝒑(𝑡) (11) 

 𝐹𝑥 = ℎ ∫ 𝑝(𝑥, 𝑡)
𝑑𝑎(𝑥)

𝑑𝑥
𝑑𝑥

𝐿−𝐿1

−𝐿1
 (12) 

 𝐹𝑦 = ℎ ∫ −𝑝(𝑥, 𝑡)𝑑𝑥
𝐿−𝐿1

−𝐿1
 (13) 

 𝑀 = ℎ ∫ �̃�(𝑥, 𝑡) (
𝑑𝑎(𝑥)

𝑑𝑥
(𝑦𝑇 − 𝑎(𝑥)) − 𝑥) 𝑑𝑥

𝐿−𝐿1

−𝐿1
 (14) 

The forces and moment can be formally expressed as (12) only the vector 𝑱(𝑥) is changed to constant 

vectors. If contact occurs between the VF is not used model the aerodynamics forces. When collision is 

used sub-glottis pressure and hertz (contact) force (16). Where r is radius of curvature, E, 𝜇 are elastic 

constants of the VF and 𝛿 is size of penetration. 

 𝐹ℎ𝑒𝑟𝑡𝑧 =
4√𝑟𝐸

3(1−𝜇2)
𝛿3/2 (15) 

2.2. Simulation results 

Self-exited vibration was simulated for time interval of one second. The model is fully parametric. VF 

profile is formed of a part of parabola taken from (Horáček et al., 2005). The flow rate was set 

Q = 0.11 l/s and gap = 0.2 mm. Natural frequencies was taken from the results (Vampola et al., 2016).  

Stabilization of the model takes about 0.1 s. Model after stabilization periodically vibrates with the 

collisions (Fig. 2). Thick marked parts of the graph show the collision. The first harmonic vibration 

frequency is 105 Hz. Closure of the glottis takes about 30 % of the oscillation period. Frequency spectrum 

of displacement VF is In Fig. 3. Fig. 4 shows the pressure field acting on the VF in the simulation during 

the last three periods of movement. Discontinuities in the pressure field are generated by switch 

aerodynamics forces to the subglottic pressure during VF collision. This pressure field was used for 

excitation FEM model of the VF. Results of dynamic FEM analysis (Figs. 5 and 6) confirmed the 

applicability of the model to generate the correct pressure fields. This can save a lot of time in comparison 

with co-simulation because it is not necessary solve CFD part. 

 

Fig. 2: Displacement and rotation vocal fold after stabilization vibration. 

3. Conclusion 

Single body parametric simulation model of self-exited vibration of the VF with 3 DOF was created by 

generalization of model (Horáček et al., 2005). VF is attached to be able to move in the longitudinal 

direction. Excitation consist of aerodynamics forces and hertz forces during the collision. The model 

shows a similar behavior as model (Horáček et al., 2005) which has good agreement with the generally 

acknowledged behavior of the VF. The model is not numerically consuming. Simulation takes about two 
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times of simulation time interval on the standard office PC. The model was used for generating pressure 

fields for excitation more sophisticated FEM model of VF. 

 

 Fig. 3: Amplitude spectrum of V1 and V2.  Fig. 4: Pressure field in the last three periods 

                                                                                                                    of vibration. 

              

Fig. 5: Displacement field of FEM simulation. Fig. 6: Trajectories of four point from  

the FEM simulation. 
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