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Abstract: The principal challenge in implementation of random fields arises from the need for determination 

of their correlation/characteristic lengths in the simplest case or more generally their covariance functions. 

The present contribution is devoted to the construction of random fields based on image analysis utilising 

statistical descriptors, which were developed to describe the different morphology of random material. A 

numerical study of one-dimensional images is performed in order to investigate the quality of obtained 

random fields. 
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1.  Introduction 

When dealing with a heterogeneous material, some material parameters can vary spatially in an uncertain 

fashion and therefore random fields are suitable for their description. In a computational setting, the 

random field and the numerical model must be discretized. Therefore, the most common approach for 

achieving this is the Karhunen-Loève expansion (KLE), see (Kučerová et al., 2012). The KLE allows for 

representation of random fields utilising surprisingly few orthogonal terms from spectral decomposition 

of covariance function, see (Adler and Taylor, 2007). Several analytical covariance functions were 

developed to describe the spatial variability, but their relevance in describing real material properties 

remains questionable and poorly identified. Recently, relatively new techniques of extracting the spatial 

randomness from images were developed, see (Soize, 2006; Jürgens et al., 2012).  

Here, we introduce a novel construction of covariance function based on the two-point probability density 

function (see Torquato, 2002), which is calculated from the given discretised image. Due to the limited 

space it is impossible to present the mathematical formulation of entire methodology. Therefore, we refer 

only basic features of each procedure used for the different constructions of random fields. 

 Karhunen-Loève expansion. It is an extremely useful tool for the concise representation of the 

stochastic processes. Based on the spectral decomposition of covariance function, the KLE 

decomposes the process into a series of orthogonal functions with the random coefficients, see 

(Adler and Taylor, 2007). For practical implementation, the KLE is truncated after M terms, 

yielding the suitable approximation. Based on the spectral decomposition of covariance function 

𝐶(𝒙, 𝒙′) and the orthogonality of eigenfunctions 𝜙𝑖, the real-valued random field 𝜆(𝒙, 𝜔) can be 

written as 

 𝜆(𝒙, 𝜔) ≈ 𝜇𝜆(𝒙) + ∑ √𝜁𝑖𝜉𝑖
𝑀
𝑖=1 (𝜔)𝜙𝑖(𝒙),  (1) 

where 𝜇𝜆(𝒙) is the mean value, 𝜁𝑖 are the positive eigenvalues and 𝝃(𝜔) is a set of uncorrelated 

random variables of zero mean and unit variance. 

 Two-point probability function (S2). It is a statistical descriptor developed for the morphology 

description of multi-phase random heterogeneous material, see (Havelka et al., 2016). Here, the 
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two-point probability function is utilised for the computation of covariance function. 

 Covariance function (CF). It is a spatial measure of how much two variables change together and 

plays a key role in the construction of random field. There are several well-known analytical 

functions (e.g. Exponential, Gaussian, see (Kučerová and Sýkora, 2013)), and/or it can be directly 

calculated from the images employing the statistical descriptor, see (Lombardo et al., 2009) for 

transformation formula. 

 Principal component analysis (PCA).  It is an orthogonal linear transformation that transforms a 

set of correlated variables into a set of linearly uncorrelated variables called principal 

components, see (Jolliffe, 2002).  

  

Fig. 1: Reference media, size 1 x 100000 px: A1 – particles 1 x 2 px filling 10 % of volume;  

A2 – particles 1 x 2 px filling 50 % of volume; B1 – particles 1 x 5 px filling 10 % of volume; B2 – particles 

1 x 5 px filling 50 % of volume; C1 – particles 1 x 10 px filling 10 % of volume; C2 – particles 1 x 10 px 

filling 50 % of volume; D1 – particles 1 x 20 px filling 10 % of volume; D2 – particles 1 x 20 px filling 

50 % of volume; R1 – particles ranging from 1 x 2 px to 1 x 20 px filling 10 % of volume; R2 – particles 

ranging from 1 x 2 px to 1 x 20 px filling 50 % of volume. 

2.  Numerical examples  

The first part of numerical analysis is devoted to the identification of the correlation lengths used in the 

analytical relations of covariance functions. As an illustration, we utilised a set of digitised images 

representing artificially created particulate suspensions consisting of rectangular white particles randomly 

distributed within a black matrix. The initial binary structures 1 x 100000 px and their basic statistical 

properties are shown in Fig. 1 and in Tab. 1, respectively.  

Tab. 1: Basic statistical properties. 

 

The calibration procedure of the covariance lengths is relatively simple and intuitive process. The proper 

optimization algorithm is used to minimise the difference between the original covariance function 

calculated from two-point probability function of reference medium (see (Lombardo et al., 2009)) and the 

computed one. In our study, we utilised the in-house GRADE algorithm, which is a real-coded stochastic 

optimization algorithm combining the principles of genetic algorithms and differential evolution, see 

(Ibrahimbegović et al., 2004). The results obtained for two covariance kernels, i.e. Gaussian and 

Exponential, are summarised in Tab. 2. 

In the next example, several numerical constructions of random fields from input digitised images are 

examined to achieve a real description of spatial variability. To keep this study clear, let us consider the 
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same set of one-dimensional binary images as in the previous example, see Fig. 1. The results in Tab. 2 

show that the computed correlation lengths are approximately ten thousand times smaller than the original 

dimensions of the investigated structure. Thanks to this fact we can reduce the dimensions of our problem 

to 1 x 100 px, and thus decrease the computational demands to a reasonable level. Besides that, it is 

necessary to objectively assess the construction techniques of random field in terms of their accuracy.  

For this purpose we prepare a verification set for each reference medium consisting of 10000 images with 

dimensions 1 x 100 px randomly cut from the original image.   

Tab. 2: Optimised covariance lengths calibrated for Gaussian (GK) and Exponential kernel (EK). 

 

 

 

Fig. 2: Relative error of covariance matrix as a function of KLE terms M [-] calculated  

for reference media - B1, B2, D1, D2, R1, R2. 

Overall, four methods for a construction of random fields: (i) Gaussian-based (GK), (ii) Exponential-

based (EK), (iii) Image-based (IMGK), and (iv) Image-PCA-based (IMGK-PCA) were examined for 

10000 realisations. The errors e(cov) on the prediction of covariance computed relatively to the 

verification sets are plotted as a function of the number of KLE terms in Fig. 2. It can be seen the gain of 
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image-based random fields' construction and strong dependencies of relative errors for a small number of 

KLE modes. 

3.  Conclusions  

In this contribution, we present different strategies for construction of random fields. A comparison of 

classical approach based on the analytical covariance functions, namely Exponential and Gaussian, and a 

novel methodology based on image analysis was shown to assess the quality and accuracy of obtained 

random fields. The whole concept was demonstrated on a digitised binary image of two phase medium. 

The most interesting finding is that the image-based random fields' construction provides more precise 

description of spatial variability than constructions based on the analytical covariance functions with 

optimised correlation lengths. It is a probably logical conclusion, but the use of analytical covariance 

functions, especially without calibrated correlation lengths, in random fields' construction is very 

widespread technique in numerical modelling of heterogeneous material and leads evidently to inaccurate 

results. 

Another important result is related to the truncation of the Karhunen- Loève expansion. It is evident from 

the presented figures that the proposed methodology is very sensitive to small number of Karhunen- 

Loève terms. In this region, the relative error of random fields compared to verification set decreases very 

sharply. 
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