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Abstract: The article presents the test stand to determine the dynamic characteristics of pneumatic artificial 

muscles (PAM). Trigonometric dependencies occurring during the muscle operation were formulated. On the 

basis of the derived equations, a degree of the relative muscle contraction was calculated. The experimental 

research was conducted for two different masses affecting the pneumatic artificial muscles. The hysteresis of 

the muscle as well as dynamic characteristics for three different input signals were presented. 
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1. Introduction 

Pneumatic artificial muscles are used mainly in drive systems of humanoid and anthropomorphic robots, 

bio-robots, exoskeletons and are more and more frequently applied in automation of production processes 

(Nowakowski et al., 2016a and Nowakowski et al., 2016b). Their application results from the advantages 

of pneumatic artificial muscles. The muscles are characterised by low mass, they generate greater forces 

in comparison with typical pneumatic cylinders with the same diameter, work smoothly even at a low 

speed, start and stop gently, a detrimental phenomenon of stick slip as well as the process of dry friction 

(Blasiak, 2016 and Blasiak et al., 2014) do not occur, they are completely hermetic and might operate in 

harsh and harmful environments (Laski et al., 2015 and Pietrala, 2016). Pneumatic artificial muscles are 

controlled by pressure changes in the muscle (Takosoglu, 2016). Proportional pressure valves or 

proportional flow valves are applied thereto the most frequently. An increase in the inner part of the 

muscle results in an increase of the muscle diameter (the muscle swells) and thus, the muscle is 

contracted and the pulling force is formed. The pulling force decreases from its max value (the muscle 

rests) to zero (the muscle is completely contracted). Fig. 1a shows an example of applying pneumatic 

artificial muscles in a bionic robot arm, whereas Fig. 1b presents an example of the application thereof in 

the vibrator of powdered materials. 

a)        b)  

Fig. 1: A bionic robot arm a), a vibrator of powdered materials b). 

2. Test stand  

The test stand is built of stainless steel and its construction resembles scales (Bochnia, 2012). A centrally 

rotating arm was attached to an inverted T-shaped frame. At one end of the frame there is a pneumatic 

artificial muscle, whereas at the second one – load mass. Under the influence of the muscle contraction, 
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the arm rotates on two needle bearings, and the change of the rotational angle is registered by the angular 

position sensor. Fig. 2a presents a general diagram of the test stand, while Fig. 2b a general view of the 

test stand to determine the dynamic characteristics. 
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Fig. 2: Test stand diagram a), general view of the test stand b). 

Piezoelectric proportional pressure value Hoerbiger Tecno Plus was applied to control the pneumatic 

muscle. The valve has a very short response time and low power consumption (Blasiak, 2016) (due to the 

piezoelectric transducer in the valve). An angular position sensor with an analog output, and a pressure 

sensor with an analog output were used in the measurement system (Adamczak et al., 2016 and 

Adamczak et al., 2015). The angular position sensor measures the rotational angle of the arm resulting 

from the muscle contraction. In order to collect the measurement and the valve control data, real time 

system Matlab and SpeedGoat hardware was applied (Dindorf, 2014 and Wos, 2015). The system 

consists of Intel Core 2 Duo 2.23 GHz CPU computer, 2048MB RAM, 1024MB industrial-grade 

CompactFlash device, 32 single-ended or 16 differential analog input (software selectable), 4 analog 

output (single-ended), and 8 digital TTL input and 8 digital TTL output channels (16-bit), I/O cable, 

terminal board. In order to determine the dynamic characteristics (Koruba, 2013 and Krzysztofik, 2014 

and Grzyb, 2016 and Gapinski, 2014), the familiarity with the degree of the relative muscle contraction 

(contraction ratio) is crucial. In the measurement system, there is no direct measurement (Janecki, 2015) 

of the muscle contraction, that is why, trigonometric dependencies occurring during the muscle operation 

were formulated. Fig. 3a shows a diagram of trigonometric dependencies of the pneumatic muscle in the 

initial position, whereas Fig. 3b – during the muscle contraction. 

a)                b)   

Fig. 3: Diagram of trigonometric dependencies: a) at rest, b) during working. 

During the muscle contraction by z value, a arm rotates counter-clockwise, and in that way, acute angle γ 

is formed (Fig. 5b). The following dependencies might be formulated on the basis of the diagram: 

 𝛼 + 𝛽 + (900 − 𝛾) = 1800 (1) 

 sin 𝛾 =
𝑧

𝑎
 (2) 

 cos 𝛾 =
𝑎−𝑦

𝑎
 (3) 

 𝑥𝑠
2 = 𝑦2 + (𝑥 − 𝑧)2 (4) 

By substituting (1), (2) and (3) to equation (4), the length of the contracted pneumatic muscle was 

obtained: 

 𝑥𝑠 = √(𝑥 − 𝑎 ∙ sin 𝛾)2 + (𝑎 − 𝑎 ∙ cos 𝛾)2 (5)  
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It is important that static and dynamic characteristics be calculated using relative contraction of the 

muscle, also known as the contraction ratio (Takosoglu et al., 2016): 

 𝜀 =
𝐿𝑛−𝑥𝑠

𝐿𝑛
∙ 100 % (6)  

where: Ln – nominal length of the muscle, 

 xs – actual length of the muscle. 

3. Experimental research  

The pneumatic artificial muscle manufactured by Festo and marked as MAS-10-300 was applied in the 

experimental studies. The muscle parameters were included in Tab. 1. 

Tab. 1: Parameters of artificial pneumatic muscle MAS-10-300. 

Parameter Value 

Symbol MAS-10-300 

Mode of operation single-acting, pulling 

Internal diameter Dn  10 mm 

Nominal length Ln 300 mm 

Max. operating pressure p  0.8 MPa 

Max. permissible pre-tensioning min -2 % of Ln 

Max. permissible contraction max 16 % of Ln 

Lifting force at max. permissible operating pressure Fmax 630 N 

Max. additional load, freely suspended 30 kg 

Operating frequency f  35 Hz 

Max. hysteresis 3 % of nominal length 

Max. relaxation 4 % of nominal length 

Repetition accuracy 1 % of nominal length 

Ambient temperature -5 
o
C+60 

o
C 

a)   b)  

c)    d)  

Fig. 4: Relative muscle contraction in the pressure function a) dynamic characteristics of the muscle 

for three different control signals: b) step signal, c) rectangular signal, d) sinusoidal signal. 
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Fig. 4a shows the obtained characteristics of the relative muscle contraction in the pressure function 

together with the hysteresis of the pneumatic muscle. Fig. 4b – 4d shows the dynamic characteristics of 

the pneumatic artificial muscle for three different control signals: step, rectangular and sinusoidal. 

4.  Conclusions 

Taking the above research into consideration, it might be concluded that the hysteresis of MAS-10-300 

pneumatic muscle is consistent with catalogue data and does not exceed 3 %. The repetition accuracy was 

verified for the rectangular control signal. The muscle performs 5 cycles (contraction – extension) within 

20 sec. As it might be seen in the chart (Fig. 5b), the repetition does not exceed 1 %. The research was 

conducted with the max. pressure value of 0.6 MPa and for this pressure value, the degree of relative 

contraction reaches the max. value of 14 %. The designed test stand makes it possible to perform 

experimental studies of various types of pneumatic muscles. 
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