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Abstract: Effective thickness approaches are useful tools for a response prediction and the design of 

sandwich structures. In this contribution, we study their applicability to free vibration analysis of laminated 

glass beams – sandwich structures composed of glass layers connected with one or multiple compliant foils. 

These interlayers are made of polymer materials with frequency/temperature-dependent behavior. Here, the 

dynamic effective thickness approach, the modal strain energy method, and the Newton-type algorithm are 

applied to the complex eigenvalue problem for a three-layered laminated glass beam. The results of the 

modal analyses, in terms of natural frequencies and loss factors, are compared for all approaches. It is 

shown that the errors of the two simplified methods depend on the ambient temperature and the applied 

boundary conditions and that these errors can be large, especially for the loss factor. 
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1. Introduction 

Laminated glass structures are thin sandwich plates or beams composed of a few glass layers connected 

with one or more compliant foils, see Fig. 1. These interlayers are made of polymer materials with 

frequency-dependent and temperature-sensitive behavior. In this contribution, we focus on the modal 

analysis of such multi-layered structures composed of elastic and viscoelastic layers. A few approaches to 

the free vibration problem of a viscoelastically damped sandwich can be found in literature. Three of 

them, two numerical approaches and one semi-analytical method, are applied in this paper to the analysis 

of laminated glass beams. 

 

Fig. 1: Laminated glass sandwich’s configuration. 

2. Semi-analytical and numerical methods for free vibration analysis 

The problem is introduced for a laminated glass beam with three layers (glass/interlayer/glass). The 

viscoelastic behavior of a polymer foil is described by a generalized Maxwell chain model and its 

damping behavior is accounted for through the complex shear modulus of the foil  

 𝐺2(𝜔) = 𝐺0 − ∑ (𝐺𝑝
1

𝜔2𝜃𝑝
2+1

)𝑃
𝑝=1 + i ∑ (𝐺𝑝

𝜔

𝜔2𝜃𝑝
2+1

) = 𝐺0 + 𝐺𝜔(𝜔),𝑃
𝑝=1  (1) 

                                                 
* Ing. Alena Zemanová, PhD.: Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 

Thákurova 7, 166 29 Prague 6; CZ, alena.zemanova@fsv.cvut.cz 
** Assoc. Prof. Ing. Jan Zeman, PhD.: Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in 

Prague, Thákurova 7, 166 29 Prague 6; CZ, jan.zeman@fsv.cvut.cz 
*** Ing. Tomáš Janda, PhD.: Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, 

Thákurova 7, 166 29 Prague 6; CZ, tomas.janda@fsv.cvut.cz 
**** Prof. Ing. Michal Šejnoha, PhD., DSc.: Department of Mechanics, Faculty of Civil Engineering, Czech Technical University 

in Prague, Thákurova 7, 166 29 Prague 6; CZ, sejnom@fsv.cvut.cz 

1122



 

 3 

where 𝜔 is the complex value of an angular frequency (or its real part), 𝐺0 is the elastic shear modulus of 

the whole chain, 𝑃 stands for the number of viscoelastic units, 𝐺𝑝 denotes the shear modulus of the 𝑝-th 

unit, 𝜃𝑝 is its relaxation time, and 𝐺𝜔(𝜔) is the frequency-dependent part of the shear modulus. 

Therefore, the eigenvalue problem corresponding to the free vibration of a laminated glass beam is 

nonlinear and the eigenvalues and eigenvectors are complex. Three methods for this task are discussed in 

this paper: the dynamic effective thickness approach, the Newton-type algorithm for the complex 

eigenvalue problem, and the modal strain energy method. All methods were implemented into our 

MATLAB-based solver. 

2.1. Dynamic effective thickness approach 

To the best of our knowledge, a few effective thickness formulations can be found in literature for 

laminated glass beams and plates under static loading, whereas only one effective thickness approach 

exists for dynamic problems (López-Aenlle et al., 2014). The effective thickness is derived from the 

analytical model by Ross et al. (1959). The authors considered a three-layered, simply-supported beam 

with purely elastic face layers and a linearly viscoelastic core with a complex shear modulus. The shear 

strains in face layers are neglected, whereas only shear stresses are assumed in the core. The deflection is 

the same for all layers, and there is no slipping at layer-interfaces. Under these assumptions, the fourth-

order differential equation of bending wave motion with the effective complex bending stiffness can be 

expressed. Then, the dynamic effective thickness for laminated glass beams, derived from the effective 

complex bending stiffness formulated in (Ross et al., 1959), is given by 

 ℎeff(�̃�) = √(ℎ1
3 + ℎ3

3) (1 + 𝑌 (1 + ℎ1
𝑔(�̃�)(ℎ1+ℎ3)

)
−1

)
3

. (2) 

In this approach, the effective thickness is a function of a real angular frequency �̃�. The geometric 

parameter is provided by 

 𝑌 =
12ℎ0ℎ1ℎ3

(ℎ1
3+ℎ3

3)(ℎ1+ℎ3)
 (3) 

with the thicknesses ℎ1 and ℎ3 and the distance ℎ0 introduced in Fig. 1. The shear parameter reads  

 𝑔(�̃�) =
𝐺2(�̃�)

𝐸3ℎ3ℎ2𝑘2 (4) 

and combines the complex shear modulus of the interlayer 𝐺2(𝜔), the Young modulus of glass 𝐸3 = 𝐸1, 

the thicknesses of layers ℎ2 and ℎ3, and the wavenumber 𝑘. 

Due to the frequency-dependency, the problem is solved by an iterative algorithm. The initial frequency 

�̃�𝑘 = �̃�0 is set to the average of the frequencies of two limiting cases: a monolithic glass beam with 

perfect interaction of glass layers and two independent monolithic glass layers with no interaction. The 

natural frequency 𝑓 and the modal loss factor 𝜂 follow from the equations (López-Aenlle et al., 2014) 

 �̃�𝑘+1
2 (1 + i𝜂) = 𝑘4 𝐸3ℎeff

3 (�̃�𝑘)

12�̅�
, 𝑓 =

�̃�

2𝜋
, (5) 

where �̅� is the mass per unit length. If the error of the new and the previous values of the frequency and 

the loss factor is out of the tolerance limit, the dynamic effective thickness is updated for the new 

frequency and the new values of the natural frequency and the loss factor are computed. 

2.2. Complex-frequency approach using finite element method and Newton-type algorithm 

Using the finite element discretization, the mass matrix 𝑴 of the laminated glass sandwich is real-valued 

and frequency-independent, whereas the stiffness matrix 𝑲(𝜔) is complex, 

 𝑲(𝜔) = 𝑲0 + 𝐺𝜔(𝜔)𝑲const, (6)  

and consists of  the frequency-independent part 𝑲0 (corresponding to the glass layers and to the elastic 

part of the shear modulus of the foil 𝐺0) and the frequency-dependent part 𝐺𝜔(𝜔)𝑲const (corresponding 

to the frequency-dependent part of the foil shear modulus 𝐺𝜔(𝜔); 𝑲const is a constant matrix), see for 

example (Daya et al., 2001). 

The well-known natural vibration problem can be written in the form 

 (𝑲(𝜔) − 𝜔2𝑴)𝑼 = 𝟎, (7) 
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where 𝜔 stands for a complex-valued angular frequency and the mode shape 𝑼 is a complex nodal 

vibration eigenvector. To be well-posed, the problem is complemented with the additional equation 

 𝑼0
T(𝑼 − 𝑼0) = 0, (8) 

where 𝑼0 is the solution of the real-eigenvalue problem 

 (𝑲0 − 𝜔0
2𝑴)𝑼0 = 𝟎 (9) 

obtained by a built-in MATLAB solver.  

The system of nonlinear equations (7) and (8) can be solved by the Newton method starting from the real-

eigenvalue solution of equation (9), 𝑼𝑘 = 𝑼0 and 𝜔𝑘 = 𝜔0. Next, the mode shapes and the frequencies 

are updated 

 𝑼𝑘+1 = 𝑼𝑘 + 𝛿𝑼𝑘+1, 𝜔𝑘+1 = 𝜔𝑘 + 𝛿𝜔𝑘+1 (10) 

with increments 𝛿𝑼𝑘+1 and 𝛿𝜔𝑘. These increments result from the system of equations 

 [
𝑲(𝜔𝑘) − 𝜔𝑘
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] = − [
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2𝑴)𝑼𝑘

𝑼0
T(𝑼𝑘 − 𝑼0)

]. (11) 

We repeat this update until the norm of the right-hand side does not exceed a given tolerance. The 

eigenvalues and the eigenvectors are complex. The natural frequency 𝑓 and the loss factor 𝜂 are 

calculated from the complex value 𝜔 according to  

 𝜔2 = �̃�2(1 + i𝜂), 𝑓 =
�̃�

2𝜋
. (12) 

2.3. Real-frequency approach using finite element method and modal strain energy method 

The complex eigenvalue solution can be expensive for larger problems. Therefore, the modal strain 

energy method was introduced by Johnson et al. (1982) to overcome this difficulty. The approximated 

value of modal loss factor of sandwich beams  

 𝜂 ≈ 𝜂𝑚 𝛱2 𝛱⁄  (13) 

involves the material loss factor of the core material (foil) 

 𝜂𝑚 = Im[𝐺2(𝜔𝑘)] Re[𝐺2(𝜔𝑘)]⁄ , (14) 

the elastic strain energy associated with the given mode shape 𝛱, and the elastic strain energy attributed 

to the viscoelastic core 𝛱2, which are given by 

 𝛱 =
1

2
𝑼r

T𝑲r(𝜔𝑘)𝑼r, 𝛱2 =
1

2
𝑼r

T𝑲r,2(𝜔𝑘)𝑼r. (15) 

Here, 𝑼r = Re[𝑼] stands for the corresponding undamped mode shape and the matrix 𝑲r = Re[𝑲(𝜔𝑘)]   
consists of the stiffness matrices of the glass layers and the real part of the stiffness matrix of the foil 

𝑲r,2 = Re[𝐺2(𝜔)]𝑲const. The natural frequencies and the mode shapes are determined iteratively by 

consecutive solutions of the undamped real-valued eigenproblem 

 (𝑲r(𝜔𝑘) − 𝜔𝑘+1
2 𝑴)𝑼r,𝑘+1 = 𝟎, (16) 

 and the approximated loss factors are computed from (13). 

3.  Results 

The results of modal analyses for the previous three approaches are compared for a simply-supported and 

a clamped-clamped laminated glass beam at ambient temperatures 20 °C and 40 °C. The dimensions of 

the beam are: the length 1 m, the width 0.1 m, and the thicknesses ℎ1/ℎ2/ℎ3 = 10/0.76/10 mm of the 

glass/foil/glass layers. The material parameters are taken from (López-Aenlle et al., 2014). 

In Tab. 1, the modal responses are compared in terms of natural frequencies and loss factors for both 

types of the boundary conditions and for both temperatures. The results for finite element approaches are 

computed for 100 elements per the beam length. The tolerance limit, set to 10−5, is used for all methods. 

The dynamic effective thickness (DET) approach gives the natural frequencies with the errors less than 

1 % compared with those from the Newton method (NM) for the simply-supported beam at both 

temperatures and also for the clamped-clamped beam at room temperature; the errors are less than 1 %. 
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However, the errors in natural frequencies are approximately 10 % for the clamped-clamped beam 

at 40 °C. The modal loss factors from the DET match the NM result only for simply-supported beam 

at 20 °C. In the other cases, the errors in loss factors are higher: 5 ‒ 10 % for the simply-supported beam 

at 40 °C and 15 ‒ 50 % for the clamped-clamped beam.  

The modal strain energy (MSE) method gives the natural frequencies with the errors less than 1 % 

compared with those from the NM for both boundary conditions at 20 °C and 5 ‒ 8 % for both beams at 

40 °C. The results for the modal loss factor does not match those from NM. The errors are 5 ‒ 15 % for 

the clamped-clamped beam and 10 ‒ 50 % for the simply-supported beam. 

Tab. 1: Comparison of natural frequencies and loss factors provided by the dynamic effective thickness 

(DET) approach, the modal strain energy (MSE) approximation, and the Newton method (NM). 

  simply-supported beam clamped-clamped beam 

temperature 20 °C Mode DET MSE NM DET MSE NM 

natural frequency 1 50.46 50.26 50.42 113.3 113.5 114.2 

[Hz] 2 197.4 196.1 196.8 303.8 301.9 303.6 

modal loss factor 1 1.22 1.53 1.22 1.74 3.78 3.31 

[%] 2 2.22 2.43 2.21 2.88 4.51 4.23 

temperature 40 °C        

natural frequency 1 44.66 41.76 44.77 95.16 80.80 85.43 

[Hz] 2 160.3 148.0 160.7 241.4 214.2 226.6 

modal loss factor 1 18.89 29.84 19.97 24.79 37.28 33.80 

[%] 2 28.57 39.85 32.08 29.52 37.04 35.20 

4.  Conclusions 

For the natural vibration problem of a laminated glass beam with a viscoelastic interlayer foil, the results 

of two simplified methods were compared with the complex eigenvalue solution provided by the Newton-

type algorithm. We made a comparison of natural frequencies and loss factors for a simply-supported and 

a clamped-clamped laminated glass beam at 20 °C and 40 °C. 

The dynamic effective thickness approach combines an easy iterative algorithm with simple analytical 

equations for natural frequencies and loss factors. For frequencies, it gives very good results for simply-

supported beam at both temperatures and for the clamped-clamped beam at 20 °C. For loss factors, the 

errors are under 1 % only for the simply-supported beam at 20 °C. 

The modal strain energy method reduces the computational cost of the problem because it works only 

with the real parts of the mode shapes, the frequency, and the stiffness matrix. It provides very good 

results for frequencies of both beams at 20 °C. However, the errors in loss factors range from 5 % up to 

50 % for the considered examples. 

Acknowledgement 

This work was supported by the Czech Science Foundation, grant No. 16-14770S. 

References 

Daya, E.M. and Potier-Ferry, M. (2001) A numerical method for nonlinear eigenvalue problems application to 

vibrations of viscoelastic structures. Computers and Structures, 79, pp. 533-541. 

Johnson, C.D. and Kienholz, D.A. (1982) Finite element prediction of damping in structures with constrained 

viscoelastic layers. AIAA Journal, 20, 9, pp. 1284-1290. 

López-Aenlle, M. and Pelayo, F. (2014) Dynamic effective thickness in laminated-glass beams and plates. 

Composites: Part B, 67, pp. 332-347. 

Ross, D., Ungar, E.E. and Kerwin, E.M. (1959) Damping of plate flexural vibrations by means of viscoelastic 

laminate. In: Structural Damping, ASME, pp. 49-88. 

1125


