
UNCERTAINTY QUANTIFICATION THROUGH A MODEL-BASED
FUZZY SET MEMBERSHIP FUNCTION

J. Chleboun*

Abstract: An approach to uncertainty quantification is proposed. It is based on a fuzzy set membership function
that is defined through a model (or models) response. That is, information about uncertain parameters is
gathered from measured responses of one or more models, the membership function is inferred and used in
uncertainty quantification of the output of a model of interest. The idea is illustrated by a beam deflection
problem.
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1. Introduction

In uncertainty quantification based on fuzzy set theory, crisp quantities are replaced by fuzzy quantities,
that is, by fuzzy sets. Each fuzzy set can be identified with its membership function representing the
membership grade of the elements of the fuzzy set, see Dubois and Prade (2000), Möller and Beer (2010),
or Zimmermann (2001), for instance. A simple but commonly used membership function has the range of
[0, 1] and a triangular graph, see Fig. 1 (left). Then, the fuzzy set is defined as the support of the membership
function or as the closure of the support. The latter approach is used in this contribution.

1.1. Elements of fuzzy set theory

To avoid mathematically interesting but computationally difficult problems, we assume that S ⊂ V is an
arc-connected compact and convex fuzzy subset of a normed space V and µS is a continuous and concave
membership function defined on S and with range [0, 1] and such that S is the closure of suppµS . The
function µS gives rise to a family of convex compact sets Sα, the α-controlled subsets of S called α-cuts
or α-level sets and defined as follows

Sα = {x ∈ S| µS(x) ≥ α}, where α ∈ (0, 1] and S0 ≡ S. (1)

By knowing the set of all α-cuts Sα, we can reconstruct the membership function

µS(x) = sup {α| x ∈ Sα} at x ∈ S. (2)

The relation (2) is the tool for the analysis of uncertainty propagation through a mathematical model. In-
deed, let Ψ : S → R, where R stands for the field of real numbers, be the input-to-output map representing
the response of a quantity of interest to input data processed by a mathematical model. Let us assume that
Ψ is continuous. The range of Ψ is a fuzzy set SΨ with the membership function determined by Zadeh’s
extension principle, see Dubois and Prade (2000), Möller and Beer (2010), or Zimmermann (2001),

µSΨ
(y) = sup

{x∈S| y=Ψ(x)}
µS(x) at y ∈ SΨ. (3)
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Fig. 1: A membership function and an α-level set (left). An “upside down membership function” and an
α-level set (right).

Remark 1: By virtue of the assumptions, the supremum can be replaced by the maximum in (2) and (3). �

The Ψ-image of each Sα is a closed interval

SαΨ =

[
min
x∈Sα

Ψ(x), max
x∈Sα

Ψ(x)

]
. (4)

Indeed, if y ∈ SαΨ, then x ∈ Sα exists such that y = Ψ(x). That is, SαΨ is a subset of the Ψ-image of
Sα. If x ∈ Sα, then Ψ(x) ∈ SαΨ, and we conclude that SαΨ = Ψ(Sα). By combining this conclusion,
Remark 1, the principle (3), and the definition (1) with SΨ and µSΨ

replacing S and µS , we infer that SαΨ
is the α-level set of SΨ determined by µSΨ

. We can approximate the membership function µSΨ
through

solving a sequence of minimization and maximization problems (4) for a sequence of values α, see also
Möller and Beer (2010) and the next sections.

2. Construction of the membership function

In most cases, the membership function is triangular or trapezoidal and is defined on the basis of expert
knowledge of the fuzzy quantity. In some situations, however, a less subjective approach is possible. To
fix ideas, let us imagine a quantity of interest Ψ(p) ∈ R depending on a parameter p that is not known
exactly. Moreover, let p appear as a parameter in another model, denoted mp, whose output is measured.
That is, a set M = {vi}ni=1 of measured values is available and represents the behavior of mp for a fixed p.
The measurements are burdened with errors. In the standard approach, the (weighted) least squares method
is applied to M and mp to identify pmin, the crisp value of p that implies the best agreement between the
response of mp and the data M . Consequently, the identified parameter pmin is employed in the model of
interest and its output Ψ(pmin) is calculated as a crisp quantity.

Due to the measurement errors, the parameter pmin is uncertain and the uncertainty quantification of Ψ(p)
attracts our attention.

If, for i = 1, . . . , n, we introduce mi
p, the calculated response of the model mp, and wi > 0, the weights

associated with the data, then pmin minimizes the objective function

f(p) = Σn
i=1wi(vi −mi

p)
2 (5)

over S, a set of admissible parameters. It is assumed that f(pmin) > 0.

To fuzzify p, let

µ1(p) = c

(
f(pmin)

f(p)
− 1

)
+ 1, p ∈ S, c ∈ R, c > 0, (6)

and consider a fuzzy set S1 = {p ∈ S| µ1(p) ∈ [0, 1]}. The set S1 is also controlled by the fixed constant c.
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Remark 2: The definition (6) is not the only option. We can, for example, define

µ2(p) = 2− f(p)

f(pmin)
(7)

and consider only p ∈ S such that f(p) ≤ 2f(pmin). In the uncertainty propagation analysis, it can be
convenient to use an “upside down membership function”; see Figure 1 (right) and Ben-Haim (2006),
where this idea is applied. In this concept, α is not limited to [0, 1], but the definition of α-cuts remain
unchanged except for the direction of the inequality in (1). As an example, take

µ3(p) =
f(p)

f(pmin)
− 1, p ∈ S. (8)

Unlike the original concept, increasing α increases the width of the α-cut in the “upside down” approach.
That is, the larger α is, the more uncertainty is taken into account at the α-level. �

By means of µ1, µ2, or µ3, the uncertainty in the parameter p is quantified. The goal is then to quantify
the uncertainty in Ψ, the quantity of interest. To this end, the intervals (4) are inferred and the membership
function µSψ is constructed through (2), where S and Sα are replaced by SΨ and SαΨ, respectively.

3. Beam deflection example

Let us consider a beam of length L = 2 in three different situations (a)–(c).

The deflection of the simply supported beam is measured at L/2 (a) once under the concentrated central
load P = 20000 and (b) twice under the concentrated asymmetric load of the same magnitude and direction
acting at the point L − b where 0.15L ≤ b ≤ 0.3L. The measured deflections are v1 = 0.0810, and
v2 = 0.0558, v3 = 0.0593, respectively. The quantity of interest is defined as (c) the deflection of the
cantilever beam at the free end, where the point load P is applied again.

As already indicated, the asymmetric load is applied at the point determined by the uncertain parameter b.
Also, the product ofE, the elastic modulus, and I , the second moment of area of the beam’s cross-section, is
not known exactly. For simplicity, let us introduce a ≡ EI . The parameter p (see Section 2) then represents
the pair (a, b) ∈ U , where U is a set of admissible parameters, take U = [30 000, 60 000] × [0.3, 0.6], for
instance.

According to Wikipedia (2018), the respective deflections are given by

wsupported(a, b) =
Pb(3L2 − 4b2)

48EI
, Ψ(a, b) ≡ wcantilever(a, b) =

PL3

3EI
, (9)

where wsupported is the response at L/2 (b = L/2 in the case of the central load) and Ψ ≡ wcantilever is the
response of the cantilever beam at L.

The function (5) reads:

f(a, b) = (v1 − wsupported(a, L/2))2 +
1

2
Σ3
i=2(vi − wsupported(a, b))2.

The minimum of f is attained at amin, bmin and, moreover, f(amin, bmin) = 1.7699× 10−3.

Let µ be given by (7), that is,

µ(a, b) = 2− f(a, b)

f(amin, bmin)
, (10)

and S = {(a, b) ∈ U | µ(a, b) ≥ 0}.
To obtain the intervals SαΨ = [lαΨ, r

α
Ψ], see (4), the following minimization and maximization problems have

to be solved:
lαΨ = min

{(a,b)∈U | µ(a,b)≥α}
Ψ(a, b), rαΨ = max

{(a,b)∈U | µ(a,b)≥α}
Ψ(a, b) (11)

for α ∈ [0, 1]. The graph of the membership function associated with the fuzzy quantity of interest is then
formed by points with the coordinates (lαΨ, α) and (rαΨ, α).
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The problems (11) were solved in the Matlab R© environment with the help of the Optimization ToolboxTM

function fmincon. The function was used to minimize Ψ(a, b) (or−Ψ(a, b) in the maximization problem)
under the constraint µ(a, b) ≥ αk, where αk, k = 0, 1, . . . ,m, are values uniformly distributed over
the interval [0, 1] and α0 = 0, αm = 1. Thus, the membership function of the quantity of interest is
approximated, see Figure 2. The least squares problem was solved by the fminsearch function.
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Fig. 2: The membership function inferred from the endpoints lαΨ and rαΨ, see (11). The horizontal axis
corresponds to wcantilever, see (9).

4. Conclusions

The presented method of determination of the membership function of fuzzy input data reduces the need for
analyst intervention. The membership function is inferred directly from the measurements. Nevertheless,
the analyst is responsible for choosing the weights in the weighted least squares and the proper form of
the input membership function. The examples (6)–(8) are not exhaustive and other expressions can be
proposed. Also, square root can be considered in (5).
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