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Abstract: Wang tiles-based description of a microstructural geometry of random heterogeneous materials
facilitates fast reconstruction of material samples. As a step towards a statistical quantification of the mi-
crostructure influence on the response of macro-scale models with fully resolved microstructural geometry, we
present a framework that accelerates the numerical analyses by (i) pre-computing characteristic responses of
the compressed microstructural representation and (ii) plugging these responses as microstructure-informed
enrichments into Extended Finite Element Method. The methodology is illustrated with a scalar steady-state
problem.
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1. Introduction

Composition of a material microstructure, along with properties of its constituents, determines the mate-
rial’s macroscopic behaviour. Current trends in numerical modelling thus focus on efficient methods that
integrate knowledge of material microstructure in order to increase their predictive ability. For instance,
computational homogenization replaces elaborate macroscopic constitutive laws with a boundary value
problem solved for a representative sample (often called PUC) of the material microstructure.

In our previous works (Novák et al., 2012; Doškář et al., 2014), we have presented an extension of PUC
based on the abstract concept of Wang tiles for modelling random heterogeneous materials. Our extension
enables efficient synthesis of stochastic microstructural realizations, allowing us to generate macroscopic
models with fully resolved microstructural geometry. In order to achieve our ultimate goal of statistical
quantification of a macroscopic response under microstructural randomness, the fast synthesis must be com-
plemented with equally efficient numerical schemes that exploit the compressed nature of the microstruc-
tural geometry. Here, we present a framework that (i) extracts characteristic responses of the compressed
microstructure, see Section 2, and (ii) re-use them as microstructure-informed enrichments in Extended
Finite Element Method, Section 3.

In the sequel, we illustrate the framework with a scalar elliptic problem (represented here with a linear,
steady-state heat conduction) governed by

∇ · (−K(x) · ∇θ(x)) = 0 , ∀x ∈ Ω , (1)

where θ denotes the temperature field and K is a second-order conductivity tensor mediating a linear
constitutive relation q = −K · ∇θ between the heat flux q and the temperature gradient ∇θ. Governing
equation (1) is further supplemented with boundary conditions:

θ(x) = θ̂(x) , x ∈ Γθ 6= ∅ , and n(x) · q(x) = q̂(x) , x ∈ Γq , (2)

where θ̂ and q̂ are a given temperature and normal heat flux profiles prescribed at boundary parts Γθ and Γq

of the domain Ω.
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Fig. 1: Illustration of: (a) a tiling and a step in the assembly algorithm, (b) a tile set,
and (c) a pre-computed enrichment field.

2. Microstructure-informed enrichment functions

Assume that a microstructural geometry under investigation is compressed within a set S of nT Wang
tiles—square domains T(i) with pre-defined mutual compatibility illustrated with colour codes in Fig. 1b.
The tile codes are designed such that a random realization of the microstructure can be assembled with a
simple stochastic algorithm: an initially empty grid is sequentially traversed, a subset of tiles compliant
with compatibility constraints posed by previously placed tiles is identified at each grid node, and one tile is
randomly chosen from the subset and placed. Albeit stochastic the resulting microstructural sample consists
of a limited number of repeating subdomains.

Pre-computing characteristic responses of the compressed system was first proposed by Novák et al. (2013),
who incorporated traction jumps across corresponding tile edges into the objective function used for de-
signing the compressed set. Depending on the weight attributed to the traction jumps, the resulting tile
morphology either exhibited periodic arrangement (for a large weight) or featured lingering traction jumps.
Here, we pre-compute tile responses that are continuous for already designed tile representations.

Similarly to numerical homogenization, we split the primary unknown θ(x) = θ∗(x) + G ·x into a fluctu-
ation part θ∗, reflecting the microstructural heterogeneity, and a macroscopic part governed by a prescribed
gradient G, which plays the role of loading. Without loss of generality, we assume that the tile domains
are centred, T(i) = [−1, 1]2 , ∀i = 1 . . . nT . Continuity of the fluctuation field θ∗ is trivially ensured by
assigning the same unknowns to corresponding tile edges. Assembling the stiffness matrix of the whole set,
we arrive at 
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 , (3)

where the additional constraint CI θ
∗ = 0 ⇔

∫
S θ
∗(x) dx = 0 handles the zero energy modes of the

problem and CII θ
∗ = 0 corresponds to one of the following conditions that prevent θ∗ from compensating

for the prescribed loading:

θ∗|∂T(i) = 0 , ∀i = 1 . . . nT , (K)∫

∂T(i)
θ∗(x)n(x) dS = 0 , ∀i = 1 . . . nT , (P)

∫

∂S
θ∗(x)n(x) dS = 0 . (S)

Solving Eq. (3) yields a fluctuation field θ∗ for a particular choice of the second constraint and prescribed
macroscopic gradient G. Due to linearity of the illustrative problem, only two cases G =

[
1 0

]T and

G =
[
0 1

]T suffice. Combined with three types of CII, six enrichment fields are pre-computed. Con-
straints (K), (P), and (S) loosely correspond to the boundary conditions traditionally employed in numerical
homogenization; however, unlike in numerical homogenization, we combine them to enrich the approxima-
tion space.
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3. Reduced model

Assume a macroscopic model whose microstructural geometry is provided by means of Wang tiles and
consider the elliptic problem governed by Eq. (1). A numerical solution to the problem follows from the
standard weak form:

Find θ ∈ U such that a (θ, ϑ) = b (ϑ) , ∀ϑ ∈ U0 , (4)

where U denotes the space of admissible fields θ(x) and U0 is the counterpart that vanishes at Γθ; a(•, •)
and b(•) stand for the bilinear and linear form, respectively, arising from Eq. (1).

Quality of a numerical approximation is primarily determined by the fitness of a finite-dimensional subspace
Uh ∈ U . In the Finite Element (FE) formulation, the approximation space consists of polynomial functions
defined element-wise; its quality can be thus controlled with the characteristic element size h and/or the
polynomial order. For the elliptic problem considered in our work, the presence of microstructural geometry
in the macroscopic model requires the finite-element discretization to adequately resolve microstructural
traits, resulting in a high-dimensional approximation space.

A remedy for high-dimensionality rests on enriching the approximation space with a priori knowledge of
local character of the solution. In Extended Finite Element Method (XFEM), these enrichments are plugged
into the model following the partition-of-unity idea.The numerical solution θr(x) then takes the form:

θr(x) =
∑

i

Ni(x)ui +
∑

j

∑

k

Nj(x)ψk(x)vjk, (5)

whereNi(x) are the usual FE shape functions, ψj(x) denotes an enrichment, and ui and vjk are the standard
and enriched Degrees of Freedom (DOFs), respectively. XFEM allows for successful modelling of crack
propagation without remeshing.

In modelling heterogeneous materials, similar ideas were adopted by Strouboulis et al. (2003), who pre-
computed numerical “handbook” functions for closely packed inclusions. Recently, Plews and Duarte
(2015) introduced a mixed approach combining XFEM with results computed for a patches of fully-resolved
microstructural geometry. While we advance on the previous two approaches, we differ in an important
aspect of re-usability of the enrichments. Unlike (Strouboulis et al., 2003; Plews and Duarte, 2015), who
rely on solving local boundary values problem just prior or during the analysis and handle only the specific
macroscopic geometry and loading, we pre-calculate responses of the compressed microstructure for any
geometry and loading.

Our approach proceed in the spirit of XFEM: we construct a coarse FE mesh over the model domain,
irrespectively of the microstructural phase boundaries, and supplement the approximation space with micro-
structure-informed enrichment functions assembled from the pre-computed tile responses. The standard
DOFs (the first sum in the right-hand side of Eq. (5)) thus cover the global character of the solution while
the enriched DOFs (the second sum in Eq. (5)) capture fluctuations in the solution caused by the presence
of heterogeneities. Plugging the XFEM approximation (5) into Eq. (4) yields the standard linear system of
equations Krur = fr, where ur collects all DOFs from Eq. (5). A common drawback of XFEM arises from
computing entries of Kr and fr. In our particular case, the enrichments are calculated for a fine discretization
at the level of individual tiles and oscillate rapidly, which prohibits use of common quadrature formulas.

To simplify the implementation, we adopt the viewpoint of Reduced Order Modelling. We re-use the
FE meshes defined for each tile to construct discretization of the whole macroscopic problem, resulting
in a high-dimensional approximation space Uf and the system Kfuf = ff . Next, we take Eq. (5) as a
definition of reduced modes qi(x), spanning the subspace Ur ⊂ Uf . The vector of unknowns uf can be
then approximated

uf = Qur, (6)

where Q gathers discrete representations of qi(x) in Uf as its columns. Finally, we approximate the sought
XFEM quantities with the fine-scale problem projected on a subspace as

QTKfQ︸ ︷︷ ︸
Kr

ur = QTff︸ ︷︷ ︸
fr

, (7)

which allows us to use standard routines for a stiffness matrix assembly and simplifies imposing Dirichlet
boundary conditions by restricting the modes to unknown DOFs only.
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Fig. 2: Geometry and loading of the illustrative example (a), global errors (b),
and local temperature profiles (c).

4. Results

We illustrate the proposed method with an analysis of an L-shaped domain subjected to prescribed temper-
atures at the bottom and right-hand-side edges, see Fig. 2a. Microstructural geometry is assembled from the
tiles depicted in Fig. 1b. Both material phases are isotropic with the conductivity of inclusions K = 100I
and the matrix K = 1I . The initial macroscopic discretization is shown in Fig. 2a. The solution θf

obtained for the high-dimensional Uf with quadratic Lagrangian elements is considered as the reference
solution (DNS). Fig. 2b reports the overall relative error in L2 norm for five uniformly refined macroscopic
discretization. The error bars depict the standard deviation obtained for 50 different microstructure realiza-
tions. Fig. 2c shows the local temperature profile at the cross-section highlighted in Fig. 2a.

5. Conclusions

The methodology delivers acceptable error while significantly reducing the number of unknowns; Only
1.6 % of DOFs were sufficient to obtain approximately 0.3 % relative error compared to DNS. In addition,
implementation of Eq. (7) holds promise for further acceleration by a low-rank approximation, such as the
hyper-reduction method.
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Strouboulis, T., Zhang, L. and Babuška, I. (2003) Generalized finite element method using mesh-based handbooks:

application to problems in domains with many voids. Computer Methods in Applied Mechanics and Engineering
Vol. 192, No. 28–30, pp 3109–3161.

196 Engineering Mechanics 2018, Svratka, Czech Republic, May 14 –17, 2018


