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Abstract: Identification of material parameters is being used in many fields ranging from geophysics, medical 
imaging, archaeology, material science to preservation of historical structures, etc. We focus on problems 
in civil engineering described by a transient heat equation, where the intervention into the structure might 
not be possible, hence our approach utilize only boundary measurements. We employ a Bayesian inference 
method to reconstruct both parameter fields, i.e. thermal conductivity and volumetric heat capacity. The spatial 
variability is approximated by randomfield which generally forms bases of the unknown fields and reduces the 
problem. The proposed approach is computationally verified for various loading scenarios, solver setups and 
material field distributions.
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1. Introduction

Parameter estimation is one of the key procedures in numerical modelling. Moreover having the ability to
analyse a given structure without damaging or intervening it opens up a new possibilities in many areas
saving both time and financial resources. Application of the inverse analysis using only boundary measure-
ments first appeared in the 1930s in geophysics, see paper (Langer, 1933) and then expanded to many fields
such as medicine, see papers (Calderón, 2006; Holder, 2004; Cheng et al., 1989), archaeology, see paper
(Campana and Piro, 2008) and/or structure analysis, see papers (Bakirov et al., 2004a,b; Huang and Chin,
2000; Jones et al., 1995; Kolehmainen et al., 2008; Toivanen et al., 2014). As lack of the information can
not be remedied by any mathematical treatment, see paper (Lanczos, 1996), one have to usually provide a
mathematical model describing the underlying physical phenomena and a sufficient set of measurements.
In our case the mathematical model is described by a transient heat equation and the set of measurements is
represented by a climatic dataset to capture realistic boundary conditions. The material fields are approxi-
mated by random-fields which coefficients are being recovered using a Bayesian inference. From results it
can be seen that our approach for such tasks is a suitable method for identification of material heterogeneity.

2. Numerical model

The physical phenomena is in our case sufficiently described by a following set of equations




ρs(x)cp(x)
∂u

∂t
(x, t)−∇ · (λs(x)∇u(x, t)) = 0, x, t ∈ Ω× (0, Ts) ,

λs(x)
∂u

∂n
(x, t) = f̃N (x, t), x ∈ ∂ΩN ,

α(u(x, t)− u0(x, t)) = λs(x)
∂u

∂n
(x, t), x ∈ ∂ΩT ,

∂Ω = ∂ΩN ∪ ∂ΩT , u(x, 0) = 0, x ∈ Ω.

(1)

where ρs is the volumetric mass density, cp is the specific heat capacity, λs is the thermal conductivity
coefficient and Ts is the time when the simulation stops. The boundary of the domain is denoted by ∂Ω
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and the environmental factors are u0, α and f̃N,T . The solution of such model is then obtained using finite
element method for which the input parameters are environmental factors, boundary and initial conditions.
The output of the model forms a vector u ∈ RNnNt , where Nn is the number of observed nodes located on
the boundary and Nt is the number of time steps.

In order to maintain the Neumann-to-Dirichlet sensing, i.e. to fulfil the basic uniqueness requirements by
measuring Dirichlet data and prescribing Neumann loading conditions or vice versa, the set of equations in
Eq. 1 is subjected to following constraint

Assumption 1 Let Γm be a subset of boundary ∂Ω that is subjected to measurements. Then

Ψ = (∂ΩN ∪ ∂ΩT ) : (Ψ ∩ Γm) /∈ ∅,

must hold, i.e. the boundary subjected to measurements must contain at least some Neumann conditions.

Another set of constraints similar to the ones used in papers (Brown and Uhlmann, 1997; Sylvester and
Uhlmann, 1986, 1987) is represented by following assumptions

Assumption 2 The material parameters λs, ρs, cp and the transfer coefficients α satisfy following

(i) λs ∈ L∞(Ω;R), inf
x∈Ω

λs(x) = λ+
s > 0,

(ii) 0 < ρ−s ≤ ρs ≤ ρ+
s <∞,

(iii) 0 < c−p ≤ cp ≤ c+
p <∞,

(iv) 0 < α− ≤ α ≤ α+ <∞,.

In the following numerical example, we employ realistic measurements of temperatures in the interior and
exterior, see Fig. 1, which were used in boundary conditions (Eq. 2) with transfer coefficient α = 10.

Fig. 1: Interior and exterior temperatures, data employed in the inverse process spans from day 2 to 11.

λs
∂u

∂n
(x, t)|∂Ω1

= 10 · (u(x, t)− T1(t)) ,

λs
∂u

∂n
(x, t)|∂Ω2

= 10 · (u(x, t)− T2(t)) .

(2)

A measurement of the observed part of boundary was conducted every 2 hours leading to Nt = 9 · 24/2 =
108 time steps. The measurement nodes Nn = 117 are emphasized by asterisks in Fig. 2a and coincide
with the boundaries ∂Ω1 and ∂Ω2 where the transfer boundary conditions (Eq. 2) are prescribed.

In contrast to the classical approach, where one have to put electrodes or thermocouples on a boundary in
order to excite different boundary conditions and measure the system response, here we present an approach
independent of such devices, relying only on a natural fluctuation of temperature. The system response after
monitoring the object of interest for several days then has the potential to contain sufficient information
about the underlying parameters.
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Each of the identified fields, i.e. λs and cv are approximated by m eigenvalues and eigenfunctions φ̃i(x) =√
λiφi(x) generated from Matérn covariance function with parameters ν = 5 and ρ = 0.25 which has the

following form

C(d) = σ2 21−ν

Γ(ν)

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
, (3)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind, ρ is the correlation
length, ν relates to the differentiability and d is the distance between two points. The covariance matrix for
given domain discretisation is then decomposed into eigenvalues λi and eigenmodes φi in a usual way. The
individual fields are then approximated in the following way

κ(x) = exp

(
m+1∑

i=0

φ̃i(x)ξi

)
. (4)

The inverse procedure identifying the random variable coefficients ξi is done in a standard fashion by
sampling the posterior distribution and maximizing the likelihood, see papers (Kučerová et al., 2012). For
each simulation we chose 75000 iterations of Markov Chain Monte Carlo (MCMC).

(a) (b) (c)
Fig. 2: (a) L-shaped domain with finite element discretisation utilised for the simulation and true material
fields: (b) thermal conductivity, (c) volumetric heat capacity.

3. Results

The following study shows the evolution of an error depending on the number of eigenmodes used for each
field. The errors are calculated as a mean value from last 5000 samples of MCMC as follows

εκ =
1

5000

75000∑

i=70000

‖κi − κr‖
‖κr‖

, (5)

where κi is the reconstructed material field in the i-th iteration of MCMC and κr is the reference field shown
on Fig. 2b or Fig. 2c. The study is performed from 5 eigenmodes, which capture approximately 70% of
the variance up to 50 eigenmodes, which capture 99.99% of the variance. The number of eigenmodes
involved in the computation is shown on the horizontal axis in Fig. 3. One can notice overall higher error
in reconstruction of volumetric capacity. This is caused by the choice of the correlation length ρ which was
chosen in favour of thermal conductivity which is much higher in comparison to the ideal correlation length
for volumetric capacity, i.e. in our case cv has higher rate of fluctuations and hence smaller ρ, see Fig. 2b
and Fig. 2c.

4. Conclusions

It can be clearly seen that for given loading scenario, domain shape and material distribution the identified
fields converge to the reference ones with the increasing number of eigenmodes. Since each iteration of
MCMC require to evaluate the model response, our next intention is to accelerate the computation by using
polynomial chaos to build a surrogate model which is much faster to evaluate. Another way to improve the
calculation is to utilize one of adaptive MCMC methods and increase the convergence rate.
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(a) (b)

Fig. 3: (a) thermal conductivity error (b) volumetric capacity error.
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