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Abstract: The paper provides a detailed parametric analysis of the recently proposed approximate method
for complex eigensolution of non-classically damped structures. This method is based on a combination of
perturbation and incremental approaches and is applicable to the classically damped structures equipped with
a specialized passive damping device. The numerical efficiency in terms of the required calculation times and
the accuracy is demonstrated on a model of an existing structure for various combination of computational
parameters. Wide numerical simulations revealed the selection of real eigenmodes of undamped system used
in the approximate eigensolution as the most important parameter affecting the final accuracy.
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1. Introduction

The installation of the specialized damping device into the structure in order to suppress excessive vibration
caused by e.g. wind or earthquake usually significantly changes the dissipative character. An assumption
of the entire system being clasically damped is no longer valid and thus the normal mode method does
not provide neither simplified solution of modal properties nor the response from the individual uncoupled
differential equations. The decoupling of the equations of such a non-classically damped system is carried
out with the use of a complex eigensolution. The complex eigenvalue problem is usually solved by the exact
state-space method that is related to an increase in computational costs, since it requires the solution of the
system of doubled size. These high numerical demands have motivated many authors during last decades
to develop more efficient procedures see, e.g., (Claret, 1991; Adhikari, 2011).

In this paper, the numerical efficiency of the approximate method for complex eigensolution recently pro-
posed by Hračov (2018) is presented by means of parametric analysis. The method is applicable to classi-
cally damped structures equipped with one passive damping element. The damping matrix of such system
is assumed in the form

C = Cp + ddT . (1)

Matrix Cp represents the classical part of the damping matrix, while the dyadic of vector d and its trans-
pose, dT , contains the non-classical part resulting from the presence of the damping device. The complex
eigenvalues λ are determined as approximate solutions of characteristic equation of the system
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where C̃pi,i = ΦT
i CpΦi, d̃i = ΦT

i d, Φi is the i-th mass normalized eigenmode of undamped system and
ωi is the corresponding i-th real angular eigenfrequency. To approximately solve Eq. (2), a combination of
perturbation and incremental methods was proposed. At first, complex eigenvalues corresponding to Cp

are determined and a small increment in the damping parameter of the device is chosen. The subsequent
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Fig. 1: The percentage relative error δA of the second and third approximate eigenvalues as a function of
damping ratio ζd for different numbers of eigenmodes m and increments ∆ζd.

solution is divided into multiple computational steps. In each step, the damping parameter of the device
is increased by the chosen small increment and the perturbation from the eigenvalue determined in the
previous step is calculated. The whole computational process ends and final approximate eigensolution is
obtained when the target value of the damping coefficient of the device is reached. The complex eigenmodes
are subsequently calculated from the obtained eigenvalues using significantly reduced matrix system. For
more details the reader is referred to the article by Hračov (2018).

2. Analysis of accuracy and numerical efficiency of proposed method

The accuracy of the proposed procedure was investigated on a 2D linear discrete numerical model of an
existing TV tower equipped with a pendulum absorber supplemented with viscous dampers. Frequency
tuning of the absorber was designed to be the most effective at vibrations in the interval of the second and
third natural frequencies of the tower itself. The model was built with beam elements having 381 nodes
and 1143 dofs. The absorber was modelled as one degree of freedom in the horizontal direction using a
concentrated mass connected to the top of the tower with the Kelvin-Voigt damping term. The classical
part, Cp, of the damping matrix was assumed to be proportional to the stiffness matrix of the entire system.
The structural damping ratio ζ was chosen equal to 0.005 for the lowest natural frequency. The accuracy of
the proposed approximate eigensolution was investigated for a set of various damping ratios of the absorber,
ζd, ranging from 0 to 0.934, while the matrix, Cp, was kept constant.

The eigensolution related to individual ζd was calculated for different increments, ∆ζd, and for several
numbers of natural modes, m, that were taken into account in the sum of the second term in Eq. (2). The
modes related to the highest values of the coefficient α, see (Claret, 1991), were selected. The accuracy
of the proposed procedure was assessed by means of absolute value of percentage relative error δA corre-
sponding to approximate eigenvalues. The accuracy generally decreases with increasing m and decreasing
∆ζd. On the other hand, the time consumption of the numerical solution increases with the increasing m
and decreasing ∆ζd. The decreasing trend of the error δA with the increase in m is apparent from Tab. 1. It
is also evident in Fig. 1 from the difference between the curves with the same color. Tab. 1 and Fig. 1 also
illustrate the higher accuracy of the proposed method in comparison with the approximate eigensolution
proposed by Rayleigh (1945) and Adhikari (2011). Only in case of low m equal to 3, the latter provided
some more accurate results. The decreasing trend of the error δA with the increase in m is also evident from
Fig. 2, where the maximum value of δA of the third eigenvalue is plotted as a function of m for several
∆ζd. It also represents the maximum error of the whole eigensolution and occured at ζd = 0.934. In this
example, the descending trend of maximum value of δA was significant up to ten eigenmodes. Extending
to more than twenty eigenmodes did not produce a substantial improvement of the accuracy, but it signifi-
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Tab. 1: The percentage relative error δA corresponding to the first four eigenvalues evaluated using two
approximate methods for two values of ζd (Hračov, 2018).

Proposed method Iterative meth. (Adhikari, 2011)
ζd 0.1 0.7 0.1 0.7

∆ζd 0.01 0.01 0.05 − −
m 3 10 3 10 3 10 1143 1143
λ1 2 · 10−4 7 · 10−6 0.011 1 · 10−4 0.011 1 · 10−4 0.001 0.028
λ2 0.034 5 · 10−4 0.357 0.005 0.357 0.005 0.028 5.657
λ3 0.061 9 · 10−4 10.31 0.224 10.37 0.719 0.041 15.62
λ4 0.036 4 · 10−4 0.820 0.011 0.820 0.011 0.002 2.033
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Fig. 2: The maximum value of error δA of the third eigenvalue as a function of the number of natural
eigenmodes m for the selected increments ∆ζd.

cantly prolonged the computational time, see Tab. 2. The error δA below 10% was achieved for numerical
simulations where real eigenmodes corresponding to coefficient α higher than 0, 2 were used.

The influence of the choice of ∆ζd on δA is apparent from the difference between the red and blue dashed
curves in Fig. 1. As expected, a higher accuracy of the eigensolution was achieved for the smaller increment
∆ζd. This is also evident from the differences between the blue curves in Fig. 2 or from Tab. 1. The red
and blue solid curves in Fig. 1 corresponding to low m also show minimal difference between the error
δA for different ∆ζd. This implies that the number of natural modes, m is affecting the accuracy of the
eigensolution more than increment ∆ζd. However, a too large increment ∆ζd could also cause substantial
inaccuracy, see Fig. 2. Based on this example, increment ∆ζd equal to 1% can be recommended for such
structures.

The numerical efficiency of the proposed method can also be expressed in terms of calculation time. The
time required for the full eigensolution, evaluated using the state-space method, was 12.8 seconds. The pro-
posed method provides a significantly faster eigensolution, the time of which is dependent on the required
number of complex eigenmodes and eigenvalues, n, and on the computational parameters m and ∆ζd, see
Tab. 2.
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Hračov S. 315



Tab. 2: Elapsed calculation time of the first n complex eigenmodes and eigenvalues for two values of ζd and
for the various combinations of ∆ζd and m (in seconds).

ζd 0.1 0.7

∆ζd 0.01 0.01 0.05

m 3 10 30 3 10 30 3 10 30
n = 3 0.031 0.037 0.163 0.047 0.095 1.064 0.032 0.042 0.243
n = 6 0.035 0.054 0.318 0.065 0.166 2.108 0.038 0.062 0.477
n = 10 0.038 0.065 0.508 0.085 0.245 3.480 0.042 0.079 0.781
n = 20 0.047 0.099 1.012 0.142 0.476 7.018 0.054 0.133 1.541
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