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Abstract:  In this study, the optimum distribution of the elastic springs in which a built-in cantilever beam 
is seated, so as to minimize the shear force on the support of the beam, is investigated. The Fourier transform 
is applied to the vibration equation of the beam written in the time domain and is shown by the structural 
behaviour transfer function which is made independent from the external influence. For the first and second 
modes of beam, the optimum locations and amounts of the springs were investigated so that the shear force 
transfer function amplitude was minimal. Stiffness coefficients of springs are taken as design variables. 
There are active constraints on the sum of the spring coefficients taken as design variables and passive 
constraints on each of them as the upper and lower bounds. Optimality criteria are derived using the 
Lagrange Multipliers method. The gradient information required for solving the optimization problem is 
analytically derived. Numerical results show that the aimed method is quite effective in finding optimum 
spring stiffness coefficients. 
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1. Introduction 
Beams are the basic structural elements used in many different engineering applications. Many 
researchers have invastigated problems with beams subjected to static and dynamic loads. Some basic 
studies on free vibrations of beams can be given as follows. Timoshenko et al. (1974) showed free 
vibration frequencies of the beams based on the floor of the Winkler composed of elastic springs. Chung 
et al. (1993) have shown an analytical solution method to find the natural frequencies of beams that are 
constrained from the middle, elastically supported on both sides. Aristizabal (1993) studied the free 
vibration of prismatic beams. Lee et al. (1999) studied the free vibrations of piles partially buried in the 
elastic layer. In Lee et al. (2002), a new method has been developed to find the buckling loads and natural 
frequencies of prismatic columns supported by an elastic spring in the centre, with the aim of finding free 
vibrations for general boundary conditions of beams. 

Liu et al. (1996) derived closed-form frequency sensitivities based on the Rayleigh principle using the 
Lagrange Multipliers method. Sinha and Friswell (2001) have applied a support location to element shape 
functions to form a global stiffness matrix. Won and Park (1998) showed optimal support placement due 
to the stiffness of the support. A optimization method has been shown by Takewaki (1998) to use transfer 
functions to optimize the location and amount of dampers in an embedded beam sitting on viscous 
dampers. 

In this study, the optimization of the locations and amounts of the springs was investigated to minimize 
the support shear force corresponding to the first and second modes of a cantilever beam supported by 
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elastic springs. The Fourier transform is applied to the motion equation written in the time domain and is 
expressed by transfer functions. SDSA (Stepest Direction Search Algorithm) method which is used by 
Takewaki (1998) to solve the optimum spring problem is used. 

2. Theoretical background of the analysed problem 
In the case where the cantilever beam subjected to a bearing action shown in Fig. 1 does not have springs, 
the motion equation can be written as follows: 

𝑴𝑴𝒖𝒖 𝑡𝑡 + 𝑪𝑪𝒖𝒖 𝑡𝑡 + 𝑲𝑲𝒖𝒖 𝑡𝑡 = −𝑴𝑴𝑴𝑴𝑢𝑢+(𝑡𝑡)   (1) 

Where M, C and K present mass, structural damping and stiffness matrices, respectively 𝒖𝒖 𝑡𝑡 ,
𝒖𝒖 𝑡𝑡 	and	𝒖𝒖 𝑡𝑡  are acceleration, velocity and displacement vectors, respectively. The r denotes influence 
vector, ü+(𝑡𝑡)is defined as base acceleration.  

 
Fig.1. Cantilever beam based on elastic springs 

If the Fourier transformation is applied to Eq. (1), 𝑼𝑼 𝜔𝜔 	and	𝑈𝑈+ 𝜔𝜔 	is the Fourier Transformation of 
𝒖𝒖 𝑡𝑡 	and	𝑢𝑢+(𝑡𝑡). Eq (1) is rewritten as 

𝑲𝑲 + 𝑖𝑖𝜔𝜔𝑪𝑪 − 𝜔𝜔4𝑴𝑴 𝑼𝑼 𝜔𝜔 = −𝑴𝑴𝑴𝑴𝑈𝑈+ 𝜔𝜔    (2) 

where 𝜔𝜔 denotes the circular frequency of the effect, and 𝑖𝑖	denotes 1- . As shown in Fig. 1, if the beam 
is supported by elastic springs, Eq. (2) is changed to 

   𝑲𝑲 + 𝑲𝑲𝒂𝒂𝒂𝒂 + 𝑖𝑖𝜔𝜔𝑪𝑪 − 𝜔𝜔4𝑴𝑴 𝑼𝑼𝒂𝒂𝒂𝒂 𝜔𝜔 = −𝑴𝑴𝑴𝑴𝑈𝑈+ 𝜔𝜔        (3) 

Here Kad shows the stiffness matrix of the inserted springs. 𝑼𝑼78 𝜔𝜔 	is the Fourier Transform of the 
displacements after the springs are added. A new parameter (Takewaki 1998) given as follow, 

𝑼𝑼 𝜔𝜔 = 𝑼𝑼𝒂𝒂𝒂𝒂(9)
:;(9)

         (4) 

If w=wn is taken here, the ground motion will be defined as a harmonic motion with frequency wn. Using 
Eq. (4), Eq. (3) can be rewritten as 

𝑨𝑨𝑼𝑼 𝜔𝜔= = −𝑴𝑴𝑴𝑴     (5) 
Make 𝑼𝑼(𝜔𝜔=) here represents the transfer function of the displacements calculated at the nth natural 
frequency. The matrix A, which contains the design variable spring stiffness coefficients (k1, k2,…,kn, ). 
Matrix A is given as 

𝑨𝑨 = (𝑲𝑲+𝑲𝑲𝒂𝒂𝒂𝒂) + 𝑖𝑖𝜔𝜔=𝑪𝑪 − 𝜔𝜔=4𝑴𝑴     (6) 
 

Here K, M and C are known. The 𝑲𝑲𝒂𝒂𝒂𝒂 matrix containing the design variables will be found. If Eq. (5) is 
rewritten as follows, 

𝑼𝑼 𝜔𝜔= = −𝑨𝑨>?𝑴𝑴𝑴𝑴     (7) 
 

transfer function displacement vector is found. The force vector of the transfer function is obtained by 
multiplying the displacement vector by the stiffness matrix and the transfer function as follows. 

𝑭𝑭 𝜔𝜔= = −(𝑲𝑲+𝑲𝑲𝒂𝒂𝒂𝒂)𝑨𝑨>?𝑴𝑴𝑴𝑴    (8) 

3. Optimization Problem 
The mathematical representation of the objective function is used 

Min    𝑓𝑓 𝒌𝒌 = 𝑓𝑓(𝑘𝑘?, 𝑘𝑘4, 𝑘𝑘D, … , 𝑘𝑘=)    (9) 
Here, the objective function f is defined as follows: 
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𝑓𝑓 𝒌𝒌 = 𝐹𝐹G(𝜔𝜔H)=
GI? (i=mode number)     (10) 

 
Where 𝐹𝐹G(𝜔𝜔H) 	represents the absolute value of the transfer function amplitude of the jth force against to 
jth degree of freedom for ith mode. Also for each spring coefficient, passive constraints given as follow 

0 ≤ 𝑘𝑘H ≤ 𝑘𝑘H (i=1,2,…,N)    (11) 
Where 𝑘𝑘H	is the upper limit of the ith spring constant. In the sum of the spring coefficients an active 
constraint can be written as 

𝑘𝑘H = 𝐾𝐾M
HI?       (12) 

Here 𝐾𝐾 is the sum of the spring coefficients to be added. 
 
4. Optimality Criteria 
Optimality criteria can be derived using the Lagrange Multipliers method. Depending on the generalized 
Lagrangian functional objective function and the Lagrange multipliers (l, µµandnn) is given as  

𝐿𝐿 𝑘𝑘H, 𝜆𝜆, 𝜇𝜇H, 𝜐𝜐H = 𝑓𝑓 𝒌𝒌 + 𝜆𝜆 (𝑘𝑘H − 𝐾𝐾=
HI? ) + 	 𝜇𝜇H(0 − 𝑘𝑘H=

HI? ) + 𝜐𝜐H(𝑘𝑘H − 𝑘𝑘HM
HI? )	    (13) 

If Eq. (13) is derived from design variables and Lagrange Multipliers, optimality criteria can be written as 
RS
RTU
+ 𝜆𝜆 = 0		 𝑖𝑖 = 1,2, … , 𝑛𝑛 			0 < 𝑘𝑘H < 𝑘𝑘H     (14) 

𝑘𝑘H − 𝐾𝐾M
HI? = 0      (15) 

 
Here the partial derivative of objective function the according to design variable ki expressesas		 RS

			RTU
. Eq. 

(14) for lower and upper constraints is changed as follows. 
RS
RTU
+ 𝜆𝜆 ≥ 0														𝑘𝑘H = 0      (16) 

RS
RTU
+ 𝜆𝜆 ≤ 0														𝑘𝑘H = 𝑘𝑘H      (17) 

For the solution of the problem, the method shown by Aydın (2014) was used. In Aydın (2014) study, he 
adapted the SDSA method given by Takewaki (1998) to the optimization of the springs. The derivation of 
the sensitivity equations in the optimization problem and the algorithm can be found from these sources. 
 

5. Numerical Example 
The 6 m long cantilever beam shown in Fig. 1 is modelled as a Timoshenko beam by dividing it into 1 m 
finite elements and assuming a linear angular displacement at each node.The shear modulus G=7.94 1010 
N/m2, the correction factor k=5/6, the cross-sectional area A=0.05m2, the moment of inertia I=2.08 10-4 
m4, density of material r=7.8 103 kg/m3, the modulus of elasticity E=2.06 1011 N/m2, the total amount of 
stiffness was chosen as 𝐾𝐾 = 2282400	𝑁𝑁/𝑚𝑚 and	∆𝐾𝐾 = 𝐾𝐾/300. A mass of 100 kg was also added to the 
end of the beam. 
 

 
										(a)		 	 	 (b)	 	 	 	(c)		 	 	 		(d)		

Fig.2. (a)-(b)Optimal spring placement for first and second mode (c)-(d) the variation of the 
transfer function of support shear force 

Figures 2 (a) and (b) show the values and locations of optimum spring coefficients. To control the 
primary mode, it is necessary to place the total spring constant optimally at the fourth node. For the 
control of the second mode, placing a large part of the spring constant on the sixth node, while placing a 
first node on one part gives the optimum solution.Figures 2 (c) and (d) show us that the objective function 
falls for first and second modes according to the design step number. 
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    (a)      (b)  

 

Fig.3. (a)-(b)Time histories of support shear force for first and second mode under resonance frequencies 

 
As can be seen from Figs. 3 (a) and (b), the optimum design considerably reduce the shear force on the 
support for the first and second modes. 
 
6. Conclusion 
In the proposed study, optimum designs for the first two modes of cantilever beams based on elastic 
springs were investigated. Optimum designs have been found under the defined constraints, which are 
based on the shear force of the support. The results are shown in the time-domain calculations, which 
significantly reduce the shear force on the support. The vibrations of the cantilever beams were examined 
separately for the first mode and the second mode, and the different designs for both cases were placed in 
the middle. The work of giving considerable knowledge in engineering designs where supporting is 
important provides results that can be useful for designing beams based on an elastic foundation. 
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