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CONDITIONS OF PULSED HEATING OVER THE SURFACE.  
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Abstract:  The object of investigation of this work is brittle materials under conditions of rapid local heating, 
which leads to large temperature gradients in the sample and in turn to large mechanical stresses that can 
cause cracking of the sample and a significant deterioration in its strength and wear resistance. 
In this problem, an approximate method for calculating unsteady temperature fields is considered, when 
there is a rapid and intensive heating of a solid sphere by the action of a heat flux, described by its density, 
which is constant in time. The existence of the fusion front is not taking into account. The method of 
approximate solution of the linear heat equation is based on the idea of a thermal front. Analytic formulas 
are obtained that determine the temperature dependence on the coordinate and on time. Then the 
comparison of the approximate and numerical solution of the heat conductivity equation is made. 
Investigation of the stress field is carried out to determine the most probable areas of the occurrence of 
cracks. Analytic expressions are obtained in the case of an elastic material. 
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1. Introduction 

For bodies it is necessary to consider temperature and stress distributions in order to explain the various 
processes that arise in them under thermal action. We use approximate solutions for the temperature 
distribution, introducing the concept of the thermal front, additional boundary conditions on it and 
integral methods of heat balance, which are used in the works (Yumashev, 2010 and Kuudinov, 2011). 
The practicality of approximate solutions and the possibility of their refinement can be advantageous over 
exact solutions, since these solutions are difficult to obtain and they appear in the form of infinite series. 
In this paper, the temperature distribution is given by a polynomial of the second degree. Moreover, this 
method makes it much faster and easier to obtain solution in comparison with the numerical method. 

2. Methods 

Over the surface of the sphere a uniformly distributed constant heat flux begins to flow at the initial 
moment of time.  

2.1.  Mathematical statement of the problem 

We have the heat equation in a spherical coordinate system, where everything depends only on the radial 
coordinate: 
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Initial and boundary conditions of the problem are: 
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where R is a radius of the sphere, 0q is a heat flux density. 

2.2.  Temperature distribution 

Let us find an approximate solution based on the concept of the thermal front. Thermal front is a certain 
mathematical surface, which is the boundary between heated and cold parts of the body.  It can be 
interpreted as a temperature line, value of which is practically indistinguishable from the initial 
temperature. Such a boundary exists, because any measuring device has limited accuracy of 
measurements. We need to solve: 
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The first boundary condition shifts from the center of the sphere to the thermal front and the initial 
condition is modified: 
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Let us obtain the solution in the form of a polynomial of the second degree: 
2
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by solving simultaneous equations: 
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It is necessary to determine the temperature front as a function of time. We use the integral heat balance 
method described in the paper (Yumashev, 2010). We require the following integral expression to be 
satisfied: 
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Using (0)l R= , we get a front-time dependence:  

 4 3 2 2 3 4 2 29 6 60l Rl R l R l R R a t+ + - + =                                    (8) 
In this approximation the thermal front does not depend on the density of the heat flux, but we can get the 
time at which the thermal front reaches the center of the sphere. Substituting 0( ) 0l t = , we obtain: 
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In order to find the temperature distribution after the indicated moment of time, we again approximate the 
exact solution of the heat equation by a square polynomial. Unknown coefficients can be found from the 
system: 
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Solving it and using again the integral heat balance method: 
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Let us compare the approximate and numerical solutions of the heat conduction equations for the case of 
a sphere of steel. To obtain a numerical solution of the heat equation, we use the finite difference method 
and apply an implicit four-point scheme. The program is written in C++. Input parameters are: 0.01R =
m, 46l = W/(m*C), 7800r = kg/m3, 460c =  J/(kg*C), 0 20T = oC, 7

0 10q = W/(m2). We consider 
our temperature approximations only until the temperature on the outer surface of the sphere reaches the 
melting temperature, so for steel 1450 1520mT = - oC.  

 
Fig. 1: Temperature distribution (solid curve is a numerical solution, dotted is an approximate). The 

initial stage corresponds to the right-hand end of the figure. 

We see that at such a high flux density, which is realized when metal is processed by a laser, for example, 
the maximum difference in the exact and approximate temperature is 100 oC. The minimal difference is 
manifested in the initial stages of the action. 

2.3.  Stress distribution 

We consider the problem of determining the stress-strain state of an elastic sphere in the presence of a 
temperature field and a free external boundary. The problem is considered in a quasi-static formulation. 
The equilibrium equations for a sphere in a spherical coordinate system in the absence of inertial forces 
and body forces are transformed into a single equilibrium equation: 
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Knowing the generalized Hooke law at a variable temperature (the Duhamel-Neumann ratio), we write 
the relationship between stresses and strains. Then, solving the equilibrium equation, we obtain:      
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Constants are found from the boundary conditions: in the center of the sphere there are no displacements 

 ( 0, 0u r= = ), the outer surface of the sphere is free of effort ( 0,r r Rs = = ).  

Final expressions for stresses are: 
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Fig. 2: Radial (on the left) and circumferential (on the right) stress distributions. 

In Fig. 2 we find that the maximum tensile stresses appear at the center of the sphere at the moment when 

0 0.7t = seconds. The maximum compressive stresses also appear at the time 0 0.7t = s, but on the outer 

surface of the sphere and they are equal 91.775 10× Pa. It is known that for most materials the greatest 
danger is represented by shear stresses (Andryushchenko, 2012). An estimate of the maximum shift gives 

max r tt s s= - . Then we obtain that the maximum shear stresses appear on the outer surface of the sphere 

when 0 0.7t = s. 

3.  Conclusions 

Numerical-analytical solutions are obtained for temperature and stress distributions in a quasistatic 
formulation for problems that do not take into account melting. The analysis of the maximum shear 
stresses, which are the greatest danger for most materials, is performed - the maximum occurs on the 
outer surface of the sphere. 
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