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Abstract: In finite element modeling of wave propagation problems, both the spatial and temporal discretiza-
tion lead to dispersion errors. It means that the phase velocity of propagated wave is related to its frequency. 
In framework of temporal-spatial dispersion analysis, the time step size for implicit time integration method 
based on the Newmark method is proposed for linear and quadratic serendipity plane finite elements. In this 
paper, we verify the theoretical dispersion analysis by elastic wave propagation in thin tube, where experimen-
tal results are known. Such time step size was used in finite element modeling of the stress wave propagating in 
this thin steel tube, the results of simulations were compared with experimental results.
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1. Introduction

Setting of the size of an element and the size of the time step are crucial for the modeling of the wave
propagation by finite elements method (FEM). It is known, that the FE mesh behaves as a frequency filter,
the higher frequencies cannot be transmitted through the numerical model and all numerical simulations
are influenced by the dispersion error, see Mullen and Belytschko (1982) and Schreyer (1983). The suitable
mesh size of the linear and quadratic serendipity plain strain finite element was established in Kolman et al
(2013). Expecting the spatial dispersion errors approximately 2%, the size of linear and quadratic elements
with respect to the minimum wave length of the propagated wave λ is H/λ = 1/10 and H/λ = 1/3, resp.,
H is the length of the finite element edge. Kolman et al (2016) gives the temporal dispersion errors for
explicit time integration method based on the central difference method. In a similar way, the dispersion
errors was derived for the implicit Newmark method. Here, the established time step size is verified on an
example of wave propagation through the thin tube. The numerical results are compared with experimental
data.

2. Dispersion errors

We extended the full (both spatial and temporal) dispersion analysis of the finite element method for implicit
time integration based on the Newmark family, see Kruisova et al (2018). The numerical strategy for
evaluation of dispersion relationships has been adopted from work of Kolman et al (2016). In this paper,
we present several polar dispersion graphs for linear and quadratic serendipity plane finite element method
for different dimensionless time step size given by the Courant number defined as C = ∆tc1/H , where ∆t
is the time step size and c1 is the longitudinal elastic wave speed.

In Fig. 1, the temporal-spatial errors in sense of polar diagrams for the linear and quadratic elements are
illustrated for the selected Courant numbers of interest C = {→ 0, 0.1, 0.5, 1.0} and Poisson ratio ν = 0.3.
The dashed line circles shows the theoretical values for the phase velocity of the longitudinal wave (small
circle) and shear wave (bigger circle) in plain strain continuum. The solid lines are the ratio of the numerical
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phase velocity ch/c1 for the longitudinal (bigger circle) and shear waves (smaller circle), resp. The other
solid lines in the right plot for the quadratic elements show the spurious (optical) branches of dispersion
spectrum. The dispersion error (the sum for the spatial and temporal dispersion) is for the Courant number
C = 0.1 approximately 3% for the linear elements and 4% for the quadratic elements. The worst values
of the dispersion error occur when the wave propagates in the diagonal direction of the mesh, smaller
dispersion errors occur when the wave propagates in the direction of the edge of the element

.
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Fig. 1: The normalized dispersion errors for linear and quadratic elements for different values of Courant
number C. The directional relation of the phase velocity dispersion error for the shear wave is plotted
with solid line (small circle) and is denoted by SW, the theoretical value in continuum corresponds to the
smaller dashed circle. For the longitudinal wave, the directional relation of the phase velocity dispersion
error is plotted with solid line, bigger for the bi-linear elements and the second smallest for the quadratic
elements and is denoted by LW. The bigger dashed circle denotes the phase velocity for the longitudinal
wave. The other solid lines for the quadratic element denote the optical modes.

3. Experimental results

To illustrate the choice of the time step step ∆t for the Newmark integration scheme, the stress signal
propagating through a thin steel tube was measured and simulated by the finite element method. The length
of the tube was 610 mm and the internal and external diameters were 101.5 mm and 108 mm, resp. The
stress signal propagating through the tube was induced by the flat spring with the diameter of the button 8
mm. The mechanical properties of the steel used in calculation were the Young modulus E = 210 GPa, the
Poisson ratio 0.3, and the density ρ = 7800 kg.m−3. The tube was loaded in the axial direction at the point
A at the cross section, see the scheme at Fig. 2, and the input signal (contact force) was measured close
to this point. The output signal (normal component of velocity) was measured in the axial direction at the
cross section in the other end of the tube in two points, B and C by Polytec vibrometer CLV-2000.

Measured signals at the points A, B and C are also given in Fig. 2. The maximum loading force is 740 N
and the time duration of loading is approximately 30 µs. Since the measured loading pulse is characterized
by small oscillations, it was smoothed for the computation purposes, only 25 highest frequencies of the
spectra was used in the inverse Fourier transformation.

4. FEM calculations

Since the periodic finite element mesh serves as a frequency filter for higher frequencies, the size of the
mesh has to be adjusted to the highest frequency in loading pulse, which was in the smoothed signal equal
to fmax = 60 kHz. The suitable mesh size H of an element was proposed in Kolman et al (2013), for the
square quadratic element is H < 0.33 c2/fmax, c2 is the velocity shear waves in continua, this size of an
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Fig. 2: Experimental setup

element corresponds to the model when a wavelength is modeled by 3 elements, and six nodes. For linear
finite element mesh, ten elements are needed for modeling of one wavelength, so the size of the element is
given by H < 0.1 c2/fmax. Using material properties of the steel tube given above the minimum size of an
quadratic element is 17 mm, for an linear element 5 mm. With respect to the thickness of the tube, we used
an quadratic element 5.5mm x 5.5 mm (one element to the thickness) and a linear element of 4mm x 4mm
(two elements to the thickness).

For the time integration the average acceleration method from the Newmark family, see Newmark (1959),
was used with parameters γ = 0.5 and β = 0.25, see Hughes (2000). At the point A the time history of
the force is prescribed, the normal components of velocity of both points B and C are stored. The finite
element code PMD was used, PMD (2002).

In Fig. 3 the results of the FE simulations together with measured signals are given. The upper plots are
for the linear mesh elements of the size H = 4 mm, which corresponds to H/λ = 0.07, the bottom plots
are for the quadratic mesh with the element of the size H = 5.5 mm, which corresponds to H/λ = 0.1.
The numerical simulations have been performed for the time step size given by different Courant numbers.
Based on comparison of numerical results with experimental data, one can see very good agreements for
smaller time step size up to C = 1.0 for linear FEM and to C = 0.5 for quadratic FEM. For larger Courant
number, the results are polluted by dispersion errors. Here, the numerical wave speeds in FE model are
underestimated.

5. Conclusions

In this work, we have verified the full dispersion analysis of linear and quadratic serendipity FEM method
with implicit time integration by a real wave propagation experiment. Also relationships for suitable setting
of mesh size and time step size for knowledge of maximum loading frequency have been tested. Based on
these realized simulations in this work, one can use these nominated suggestions in real FE simulations of
elastic wave propagation problems. In future, the time reversal modeling will lead to the detailed analysis
of the dispersion errors in numerical FE simulations.
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The work of A. Kruisová and R. Kolman was supported by the grant project 17-22615S of the Czech
Grant Agency within the institutional support RVO: 61388998. The work J. Trnka and M. Mračko was
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Fig. 3: Comparison of the experimental results with computational simulations for different time steps given
by different Courant numbers. The upper plots are for the linear mesh, the bottom plots are for the quadratic
mesh. Left side graphs give the results in point B, which is at the same side of the tube, as the loading was
placed, the right side graphs show the result at the point C, which is on the opposite side of the tube, than
the loading place.
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