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Abstract: This report presents the derivation of formula for effective longitudinal Young’s modulus of 
laminate composed of symmetrically oriented, unidirectionally reinforced laminas. Single lamina may be 
treated as an orthotropic layer when the directions of unidirectional reinforcement and tensile loading are 
the same. With orientation angle θ other than a multiple of π/2 the lamina becomes a monoclinic layer. 
Nevertheless, when the symmetrical sequence of oriented laminas is considered e.g. θ/-θ/-θ/θ, they constitute 
an orthotropic laminate as a whole. It is obvious that the effective Young’s moduli of single monoclinic 
lamina and the resultant symmetrical orthotropic laminate should be different and they are, as it is shown in 
this report. For comparison the material constants of glass-polyester laminate have been applied. 
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1. Introduction 

Researches into effective Young’s modulus of multiple phase materials have well documented tradition. 
In the 19th century W. Voigt (1889) presented the effective stiffness matrix of two phase composite 
material for assumed isostrain model of deformation. A few decades later A. Reuss (1929) derived and 
published the effective compliance matrix for composite under isostress condition. As Voigt and Reuss 
did not include the influence of Poisson’s ratio on effective Young’s modulus of composite, their models 
are limited only to one-dimensional case. The compliance matrix including Poisson effect of composite 
composed of isotropic phases may be found in publication of Bin Liu et al. (2006). The analysis of fibre 
orientation influence on Young’s modulus for unidirectionally reinforced laminate presented H.W. Wang  
et al. (2014). 

This work constitutes an extension of the cited above researches onto orthotropic laminates composed of 
monoclinic layers. Obtained results have been compared with Voigt model (Eq. 1), which generally 
underestimates the resultant effective longitudinal Young’s modulus.  

 𝐸𝑒𝑓𝑓
𝑉𝑜𝑖𝑔𝑡 = Φ𝐴 ∙ 𝐸𝐴 + Φ𝐵 ∙ 𝐸𝐵 (1) 

where: 

Φ𝐴, AE - respectively volume fraction and Young’s modulus of phase A, 

Φ𝐵, BE - respectively volume fraction and Young’s modulus of phase B, 

As the layers of the considered laminate have the same structure and the laminate is orthotropic, then it 
follows that Φ𝐴 = Φ𝜃 = 0.5 and Φ𝐵 = Φ−𝜃 = 0.5, where θ is the angle of orientation relative to the 
tension direction. The layers are symmetrically oriented at the same angle but in opposite directions as 
shown in Fig. 1. In consequence, although each oriented layer is monoclinic, the resultant laminate is 
orthotropic.  
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Fig. 1: Exemplary sequence of symmetrically oriented laminas. 

Each layer with reinforcement oriented along axis X (Fig. 1) is orthotropic in XYZ coordinate system, but 
after rotation at angle θ becomes a monoclinic layer in 123 coordinate system. Axes Z and 3 coincide in 
chosen coordinate systems. The compliance matrix S of orthotropic layer is given in Eq. 2.  

 

⎩
⎪
⎨

⎪
⎧
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸𝑥

−𝜈𝑦𝑥
𝐸𝑦

−𝜈𝑧𝑥
𝐸𝑧

−𝜈𝑥𝑦
𝐸𝑥

1
𝐸𝑦

−𝜈𝑧𝑦
𝐸𝑧

−𝜈𝑥𝑧
𝐸𝑥

−𝜈𝑦𝑧
𝐸𝑦

1
𝐸𝑧

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1
𝐺𝑦𝑧

0 0

0 1
𝐺𝑥𝑧

0

0 0 1
𝐺𝑥𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∙

⎩
⎪
⎨

⎪
⎧
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦⎭

⎪
⎬

⎪
⎫

⇒ 𝜺 = 𝑺 ∙ 𝝈 (2) 

After rotation at angle θ the compliance matrix 𝑺� of lamina takes the form given in Eq. 3. 
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⇒ 𝜺� = 𝑺� ∙ 𝝈� (3) 

2. Derivation of effective Young’s modulus of considered laminate 

As shown in Fig. 1, the axial tension in direction 1 is considered. In derivation of the formula for effective 
longitudinal Young’s modulus, assuming that Φ𝜃 = Φ−𝜃 = 0.5, the following relations are essential: 

• resultant stress in laminate is the sum of products of stress and volume fraction in each lamina:  
 𝜎1 = 0.5(𝜎1𝐴 + 𝜎1𝐵) (4) 
 𝜎2 = 0.5(𝜎2𝐴 + 𝜎2𝐵) (5) 
 𝜎6 = 0.5(𝜎6𝐴 + 𝜎6𝐵) (6) 

• strains in layer’s  plane are the same in each lamina: 
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 𝜀1 = 𝜀1𝐴 = 𝜖1𝐵 (7) 
 𝜀2 = 𝜀2𝐴 = 𝜖2𝐵 (8) 
 𝜀6 = 𝜀6𝐴 = 𝜖6𝐵 (9) 

• assumed boundary conditions are: 
 𝜎3 = 𝜎3𝐴 = 𝜎3𝐵 = 0;   𝜎2 = 0;   𝜎6 = 𝜏12 = 0 (10) 

The superscripts A, B refer to laminas oriented respectively at angle θ and –θ. The resultant stresses σ2 
and τ12 = σ6 in laminate as a whole equal zero, then Eqs. 5-6 yield:  

 𝜎2𝐴 = −𝜎2𝐵 (11) 
 𝜎6𝐴 = −𝜎6𝐵 (12) 

As the volume fractions and absolute values of orientation angles are the same for both phases A and B, it 
follows that:  

 𝜎1𝐴 = 𝜎1𝐵 = 𝜎1 (13) 

The effective longitudinal Young’s modulus of laminate may be calculated from the Eq. 14. 

 𝐸1
𝑒𝑓𝑓 = 𝜎1

𝜀1𝐴
= 𝜎1

𝜀1𝐵
 (14) 

From Eqs. 2, 3 and 11-13 the lamina’s strains have been derived and take form of Eqs. 15-16. 
 𝜀1𝐴 = 𝜎1 ∙ 𝑠11𝐴 + 𝜎2𝐴 ∙ 𝑠12𝐴 + 𝜎6𝐴 ∙ 𝑠16𝐴  (15) 
 
 𝜀1𝐵 = 𝜎1 ∙ 𝑠11𝐵 − 𝜎2𝐴 ∙ 𝑠12𝐵 − 𝜎6𝐴 ∙ 𝑠16𝐵  (16) 

Noting that sA
11 = sB

11,  sA
12 = sB

12, sA
16 = -sB

16 and substituting Eqs. 15, 16 into Eq. 7 yields:  
 𝜎2𝐴 = 𝜎2𝐵 = 0 (17) 

Noting that sA
66 = sB

66 , from Eqs. 3, 9, 12 and 17 the stress σ6
A has been calculated (Eq. 18). 

 𝜎6𝐴 = −𝜎1 ∙
𝑠61𝐴

𝑠66𝐴
 (18) 

Substituting Eqs. 15, 17 and 18 into 14 the formula for effective longitudinal Young’s modulus has been 
derived in the form of Eq. 19. 

 1

𝐸1
𝑒𝑓𝑓 =  𝑠11 −

(𝑠16)2

𝑠66
 (19) 

In derivation process the following elements of oriented layer’s compliance matrix (Eq. 3), presented also 
by Reddy (2004), have been applied: 

 𝑠11 = 1
𝐸𝑥
𝑐𝑜𝑠4𝜃 + � 1

𝐺𝑥𝑦
− 2 𝜈𝑥𝑦
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� 𝑐𝑜𝑠2𝜃 ∙ 𝑠𝑖𝑛2𝜃 + 𝑠𝑖𝑛4𝜃 1

𝐸𝑦
 (20) 

 𝑠12 =
−𝜈𝑥𝑦
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𝑐𝑜𝑠4𝜃 + � 1
𝐸𝑥

+ 1
𝐸𝑦
− 1

𝐺𝑥𝑦
� 𝑐𝑜𝑠2𝜃 ∙ 𝑠𝑖𝑛2𝜃 − 𝑠𝑖𝑛4𝜃 𝜈𝑥𝑦

𝐸𝑥
 (21) 
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𝐸𝑥

+ 2𝜈𝑥𝑦
𝐸𝑥
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𝐺𝑥𝑦
� 𝑐𝑜𝑠3𝜃 ∙ 𝑠𝑖𝑛𝜃 + � 1

𝐺𝑥𝑦
− 2𝜈𝑥𝑦

𝐸𝑥
− 2

𝐸𝑦
� 𝑠𝑖𝑛3𝜃 ∙ 𝑐𝑜𝑠𝜃 (22) 

 𝑠66 = �𝑐𝑜𝑠2𝜃−𝑠𝑖𝑛2𝜃�
𝐺𝑥𝑦
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The one important conclusion follows from Eq. 19: the effective Young’s modulus of considered laminate 
is not less than that of a single rotated lamina i.e.: 

 𝐸1
𝑒𝑓𝑓 ≥ 1

𝑠11
  (24) 

In Eq. 24 the equality occurs only when orientation angle θ = n·π/2, n being a natural number or for θ ᴝ 
50º, as seen in Fig. 2. The graphical comparison of the derived E1

eff with the inverse of s11 is shown in Fig. 
2. The material constants of unidirectionally reinforced glass-polyester laminate have been adopted in the 
graph: E1 = 34533 MPa and E2 = 10035 MPa. The differences are noticeable. The resultant Young’s 
modulus of laminate is much greater than that of a single oriented lamina as the effect of mutual 
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stiffening of laminate’s oriented layers. As seen in Fig. 2 at some angles the value of effective Young’s 
modulus is even twice that of a single layer. 

 
Fig. 2: Derived effective Young’s modulus and inverse of s11 as function of the orientation angle θ. 

3.  Conclusions 

This report contains the derivation of the effective longitudinal Young’s modulus of orthotropic laminate 
composed of symmetrically oriented, unidirectionally reinforced laminas. The derived formula may be 
very useful in construction of yacht’s hulls. It gives a latitude in designing the desirable stiffness of a hull 
in specified directions by substituting heavy multi-angle glass fabrics (e.g. -45/0/45) by unidirectional one 
applied at specified angles. This gives the possibility of building more lightweight and durable 
constructions. 

The derived formula (Eq. 19) applies to laminate composed of identical single unidirectional fibrous 
layers, oriented at angles of the same absolute values, with equal volume fractions (Φ𝐴 = Φ𝐵 = 0.5) and 
symmetrical arrangement relative to the neutral plane of laminate, parallel to the plane 12 in Fig. 1. 
Exemplary laminate structure may be: -θ/θ/θ/-θ. 

The graph in Fig. 2 shows that the effect of mutual stiffening of laminate’s oriented layers is significant 
and effective Young’s modulus of laminate, in some ranges of orientation angle θ, is much greater than 
that of the single layer. 

The next step of research into presented aspect of fibrous composites may be the derivation of formulae 
for all plain-stress-state material constants and subsequently an extension of the scope of application of 
formulae to any layered composite. 
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