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Abstract: This paper is focused on the numerical simulation of the compressible gas flow through the porous
media and through the diffusible barriers. We work with the the non-stationary viscous compressible fluid flow,
described by the RANS equations. The flow through the porous media is characterized by the loss of momentum.
For the simulation of the diffusible barrier we analyze the modification of the Riemann problem with one-side
initial condition, complemented with the Darcy’s law and added inertial loss. The presented examples were
obtained with the own-developed code for the solution of the compressible gas flow.
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1. Introduction

We work with the compressible fluid motion described by the conservation laws of mass, momentum, and
energy. These fundamental conservation laws form a system of partial differential equations (the Euler
equations, the Navier-Stokes equations, the Navier Stokes equations with turbulent models). We choose
the well-known finite volume method to discretize the analytical problem, represented by the system of
the equations in generalized (integral) form. We split the area of the interest into the elements, and we
construct a piecewise constant solution in time. The crucial problem of this method lies in the evaluation
of the so-called fluxes through the faces of the elements. Here we use the analysis of the Riemann problem
to construct these fluxes. The analysis of the Riemann problem with original modifications is used at
the boundary (see Kyncl (2011); Kyncl and Pelant (2014, 2016)), and for the simulation of the diffusible
barrier, presented also in Kyncl and Pelant (2013), and further developed in Kyncl and Pelant (2017). Here
we show own algorithm for the solution of the boundary problem at the diffusible barrier, and we use it in
the numerical examples.

2. Equations

The system of conservation laws can be written in the following vector form

∂w

∂t
+

3∑

s=1

∂f s(w)

∂xs
=

3∑

s=1

∂Rs(w,∇w)

∂xs
+ S(w) in QT = Ω× (0, T ). (1)

Here w = w(x, t) is the state vector, x ∈ Ω, t denotes the time, QT is the space-time cylinder, f s are the
inviscid fluxes, Rs are the viscous fluxes, S is the source-term vector. Further we use the equation of state
of ideal gas, and the turbulent model equations.

3. Porous media simulation

The porous media is simulated using the modification of the system of equations (1). The simple porous
media can be simulated via the new source term, written as
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(2)

Here α is the permeability coefficient, Co is the pressure gradient coefficient, % is the density, v =
(v1, v2, v3) is the velocity vector, g = (g1, g2, g3) is the gravitational acceleration vector, µ denotes the
dynamic viscosity. The source term (2) was implemented into own-developed software, Figure 1 shows
computed example.

v1 velocity pressure v1 velocity pressure

Fig. 1: The compressible gas flow through the polygonal porous area, isolines of v1 velocity component
and the pressure, computational results for the regime 10 [m s−1], 2D inviscid simulation, and 3D viscous
turbulent simulation in the gravitational field.

4. Boundary condition for the diffusible barrier

Here we present the diffusible barrier condition as a combination of Darcy’s law with the additional innertial
losses.

∆p

∆m
= −

(
µ

α
U + Co

1

2
RU2

)
, (3)

where ∆p = p2−p1 is the pressure difference across the barrier, ∆m is the thickness of the barrier (example
∆m ∈ (0.01, 0.05)), µ is the dynamic viscosity, α the permeability coefficient (example α = 10−8), Co is
the pressure gradient coefficient (example Co = 102), R the density at the barrier, and U is the velocity at
the barrier. The equation (3) can be rewritten in the form

RU2 + CU = d(p1 − p2), (4)

here C = 2µ
αCo

> 0, d = 2
∆mCo

> 0, (p1 − p2) ≥ 0. We are interested in the boundary values R,U, P
at the barrier. Further we require that the conservation laws (1D Euler equations) are satisfied in the close
vicinity of the barrier
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+

∂
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%u
%u2 + p

(E + p)u


 = 0, t ∈ (0,∞), x̃1 ∈ (−∞,∞). (5)

Here the axis x̃1 is perpendicular to the barrier, %(x̃1, t) denotes the density, p(x̃1, t) is the pressure, u(x̃1, t)
is the velocity (with the direction perpendicular to the barrier), E(x̃1, t) denotes the total energy: E =
%u2/2 + p/(γ − 1). The initial condition is formed by the two states near the barrier. Let us denote these
states %1, u1, p1 (for x̃1 < 0 ) and %2, u2, p2 (for x̃1 > 0). Further we think of the barrier problem as of two
boundary problems (for the inlet, and for the outlet) with the two particular solutions (different in general).
The analysis of these problems was shown in Kyncl and Pelant (2017), Figures 2, 3 show the resulting
algorithm. We suppose the initial velocity u1 ≥ 0, and we seek the solution with U > 0.
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INLET to the diffusible barrier

INPUT: γ, %1, p1, u1, C = 2µ
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Fig. 2: Algorithm for the solution of the Problem 1 (INLET to the barrier). Both posibilities are taken into
account.

OUTLET from the diffusible barrier

INPUT: γ, %2, p2, u2, C = 2µ
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Fig. 3: Algorithm for the solution of the Problem 2 (OUTLET from the barrier). Both posibilities are taken
into account.
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5. Examples

The presented algorithm was implemented into the own-developed code, and used on the numerical exam-
ples. The Figures 4, 5 show the visual comparison of the flow through the diffusible barrier composed of
multiple rigid plates, porous media, and the diffusible barrier. The velocity profiles at chosen vertical cuts
are presented.

v1 velocity

pressure

Fig. 4: Numerical simulation of the barrier composed of multiple plates, comparison with porous media,
and 3D simulation. Regime 15[m s−1], barrier height h = 0.1 [m], results at the time instant t = 0.2 [s].

regime 15[m s−1] h = 0.2 [m]

Fig. 5: Numerical simulation of the barrier simulated as porous media (left), and diffusible barrier (right).

6. Conclusions

The paper works with the compressible viscous gas flow, with the focus on the porous media and the
diffusible barrier. The original boundary condition for the diffusible barrier (analyzed by authors also in
Kyncl and Pelant (2013, 2017)) is presented, together with the computational algorithm. It is based on the
analysis of the Riemann problem for the split Euler equations and the modifications of this problem. Here
the left hand side initial condition is replaced by given complementary conditions. The resulting algorithm
was implemented into the own-developed software, and used in numerical examples.
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