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Abstract: This contribution is devoted to validation of the homogenized model of porous piezoelectric media. 
We consider the solid piezoelectric skeleton with embedded electrically inert fluid inclusions and the two con-
ducting electrodes in which different electric potentials are prescribed. The homogenized model provides the 
macroscopic results which are together with characteristic responses of the microstructure used for reconstruc-
tion of the strain and electric fields at the level of heterogeneities. These reconstructed fields are compared to 
the responses of the reference model.
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1. Introduction

Piezoelectric materials have many applications in modern technologies, such as mechatronics, electronics,
etc. They can be found also in natural structures in the form of crystals. They are often used in smart
structures as actuating parts for self-monitoring or self-control, e.g. in the aerospace industry to control
vibrations, or acoustic radiation of thin flexible constructions. There are different methods for mathematical
modelling of heterogeneous media consisting of piezoeletric components such as Mori–Tanaka and self
consistent upscaling schemes,see Ayuso (2017), or the periodic homogenization approaches based on the
two-scale asymptotic expansions, on the two-scale convergence, see Allaire (1992), or on periodic unfolding
method , Cioranescu (2008).

The aim of this contribution is to show that the presented homogenization approach for modeling porous
piezoelectric media, see Rohan (2018); Miara (2015), provides reliable results with lower computational
demands in comparison to the direct numerical simulation. The homogenization procedure leads to the
decoupled problems at two levels. We solve a problem for the unknown displacement and pressure fields
at the macroscopic level and several subproblems to find the local microstructural responses. The local
responses and the global fields are used to reconstruct the solution, i.e. the displacements and the electric
potential and consequently also the strain and electric fields at the microscopic level for a given size of the
heterogeneities. These reconstructed fields are comparable to those computed for the non-homogenized
medium.

2. Homogenization of fluid-saturated piezoelectric medium

We consider the piezo-poroelastic medium with a periodic lattice occupying an open bounded domain
Ω ⊂ R3 which can be decomposed into the piezoelectric matrix, Ωm, elastic conductors, Ω∗, and fluid-
saturated inclusions, Ωc:

Ω = Ωc ∪ Ωm ∪ Ω∗ , Ωc ∩ Ωm ∩ Ω∗ = ∅ , where Ω∗ =
⋃

k

Ωk
∗ . (1)
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In the case of quasi-static loading when inertia and viscosity effects can be neglected, the state of the solid
structure is governed by the following equilibrium equations:

−∇ · σ(u, ϕ) = f , in Ωm∗ ,

−∇ · ~D(u, ϕ) = qE , in Ωm ,
(2)

where u is the displacement, ϕ is the electric potential, σ is the Cauchy stress tensor, ~D is the electric
displacement, f is the the volume-force and qE is the volume electric charge. The Cauchy stress tensor and
the electric displacement are determined by the following constitutive equations:

σij(u, ϕ) = Aijklekl(u)− gkij(∇ϕ)k ,

Dk(u, ϕ) = gkijeij(u) + dkl(∇ϕ)l ,
(3)

where AA = (Aijkl) is the elasticity fourth-order symmetric tensor. The deformation is coupled with the
electric field through the 3rd order tensor g = (gkij), gkij = gkji and d = (dkl) is the permitivity tensor.

The mass conservation for the isolated inclusions yields
∫

∂Ωck
u · n dS + γpk|Ωk

c | = 0 , ∀k ∈ {1, . . . , k̄} , (4)

where n is the unit normal vector, γ is the fluid compressibility, pk is the pressure in the k-th inclusion and
Ωk
c ⊂ Ωc is the domain occupied by the inclusion.

The homogenization methods based on the two scale convergence or the unfolding operator techniques,
Cioranescu (2008), can be used for the asymptotic analysis of the problem stated above for ε→ 0, where ε
is the scale parameter reflecting the size of a periodic unit. The homogenization process results in the local
problems for computing the so-called characteristic responses at the microscopic level and the macroscopic
model equations. Note that in order to remain the electric field bounded with ε→ 0, the dielectric properties
(tensors g, d in (3)) of the piezoelectric material must getting smaller in the right order.

The macroscopic problem is expressed in terms of the homogenized coefficients and is solved for the un-
known macroscopic displacement u0 ∈ U(Ω) (U(Ω) is the admissibility set) and macroscopic pressure
p0 ∈ L2(Ω):

∫

Ω
e(v0) :

(
AAHe(u0)− pBH

)
dV =−

∫

Ω
e(v0) :

(∑

k

HH,kϕ̄k + SHρE

)
dV

+

∫

Ω
f̂ · v0 dV +

∫

∂Ω
h · v0 dSx ,

∫

Ω
q0
(
BH : e(u0) + pMH

)
dV =

∫

Ω
q0

(∑

k

Zkϕ̄k +RHρE

)
dV ,

(5)

for all v0 ∈ U0(Ω) and for all q0 ∈ L2(Ω). Above e(u) = 1
2(∇u + (∇u)T ) is the strain tensor, f̂ are the

volume forces, h are the surface tractions, ρE is the surface charge and ϕ̄k is a given potential in the k-th
conductor.

The homogenized coefficients AAH , BH , HH,k, SH , MH , Zk and RH are computed using the characteristic
responses obtained by solving several decoupled problems at the microscopic level. Using the macroscopic
solution (u0(x), p0(x)) of (5) and the local results (ωij(y), ωP (y), ωρ(y), ω̂k(y), η̂ij(y), η̂P (y), η̂ρ(y),
η̂k(y)), we are able to reconstruct the strains and the electric field for a finite scaling parameter ε0 at the
level of the heterogeneities. The local gradients can be expressed as:

emic(x, y) = ex(u0) + ey(ωij(y))exij(u0)− p0(x)ey(ωP (y)) + ey(ωρ(y))ρE +
∑

k

ey(ω̂k(y))ϕ̄k ,

~E
mic

(x, y) =
1

ε0

(
∇yη̂ij(y)exij(u0)− p0(x)∇yη̂P (y) +∇yη̂ρ(y)ρE +

∑

k

∇yϕ̂k(y)ϕ̄k

)
.

(6)
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3. Model validation

The homogenized model of piezoelectric porous media is validated against results obtained by the direct
numerical simulation of the periodic structure. The reference model is built up by copies of the periodic
unit cell for a given finite ε0. We consider a block sample made of barium-titanite piezoelectric matrix
in which the fluid inclusions and the two networks of metallic conductors are embedded, see Fig. 1. The
boundary conditions applied to this sample are depicted in Fig. 1 right, in y direction the periodic condition
is employed. No surface electric charge, no volume forces and surface tractions are considered in our
validation test. The deformation of the sample is induced by the piezoelectric effect due to the prescribed
electric potentials ϕ̄1, ϕ̄2. The responses of the reference and homogenized model are compared in Fig. 2,
where the magnitudes of the strain field and the electric field are depicted. The graphs in Fig. 2 bottom
show the relative difference of the quantities along a given line. The both models are solved by means of
the finite element method in SfePy package, see Cimrman (2014).

Fig. 1: Computational domains and boundary conditions: top – macroscopic domain Ω (left) and micro-
scopic reference cell Y (right); bottom – domain use in the reference model; right — boundary conditions
applied to the sample.

4. Conclusion

The homogenized model of piezoeletric fluid-saturated porous media was validated using the direct nu-
merical finite element simulation of a given heterogeneous structure. In the validation test, the decoupled
microscopic problems with 741 degrees of freedom (DOFs) are solved several times to compute all the cor-
rector functions. This procedure is followed by the solution of the macroscopic problem with 577 DOFs and
by reconstruction of the microscopic fields. The computational time of the homogenized model, including
reconstructions at the microscopic level, is about 15 times faster than the solution of the reference model
which has approximately 4.5× 105 DOFs. It is the significant reduction of computational cost. The results
of the homogenized and the reference model are in a good agreement except the parts close to the domain
boundary where the periodicity assumption applied in the homogenized model is not satisfied.
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Fig. 2: Responses of the reference (top) and homogenized (middle) model and the relative difference of the
results (bottom); left – strain field magnitude, right – electric field magnitude.

References
Allaire, G. (1992), Homogenization and two-scale convergence. In SIAM J. Math. Anal., Vol 23, pp 1482–1518.
Ayuso, G., Friswell, M., Adhikari, S., Khodaparast, H., Berger, H. (2017), Homogenization of porous piezoelectric

materials. In Int. J. Solids Struct., Vol 113–114 pp 218–229.
Cimrman, R. (2014), SfePy - Write Your Own FE Application. In Proceedings of the 6th European Conference on

Python in Science (EuroSciPy 2013), pp 65–70.
Cioranescu, D., Damlamian, A., Griso, G. (2008), The periodic unfolding method in homogenization. In SIAM J.

Math. Anal. Vol 40, pp 1585–1620.
Miara, B., Rohan, E., Zidi, M., Labat, B. (2015), Piezomaterials for bone regeneration design-homogenization ap-

proach. In J. Mech. Phys. Solids, Vol 53, pp 2529–2556.
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