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Abstract: In the paper the response of a heavy ball rolling inside a semi-spherical cavity under horizontal
kinematic excitation is investigated. The system with six degrees of freedom with three non-holonomic con-
straints is considered. The contact between the ball and the cavity surface is supposed to be perfect without
any sliding. The mathematical model using the Appel-Gibbs function of acceleration energy is developed and
discussed. The most important post-critical regimes are outlined and qualitatively evaluated on the frequency
axis. Numerical experiments have been performed when excitation frequency is slowly swept up and down.
Results obtained by means of semi-analytical investigation and numerical simulation are evaluated and physi-
cally interpreted. Some applications in civil engineering as a tuned mass damper used on slender structures is
outlined. Strengths and weaknesses of solution method are evaluated.

Keywords: nonlinear dynamics, non-holonomic systems, Appell-Gibbs formulation, singular states,
tuned mass damper

1. Introduction

Passive tuned mass dampers (TMD) of various types are widely used in civil engineering. TV towers,
masts and other slender structures exposed to wind excitation are usually equipped with such devices. If
there is an insufficient place to install a conventional pendulum type device, an absorber of the ball type
represents a convenient solution. The first such device in the Czech republic was presented by Pirner (1994)
for suppression of the excessive transversal vibrations of a suspended prestressed concrete footbridge over
the "Swiss Bay" near Vranov. In this case was the ball intended to be placed in the long curved box and
the ball was expected to move in one direction only. The regular ball absorbers woring in both horizontal
directions were installed on two TV towers in south-western Bohemia in the late nineties, the technical
details are decribed by Pirner and Fischer (2000).

The present paper si devoted to the analysis of the response of a heavy ball rolling inside a semi-spherical
cavity under horizontal kinematic excitation. The used mathematical model is based on the Appell-Gibbs
apprach, it comprises the system with six degrees of freedom with three non-holonomic constraints. The
Appell-Gibbs formulation, see for instance (Pars, 1972; Udwadia, 1998), of a relevant non-holonomic
system dynamics proved excellent efficiency in comparison with a conventional way being based on La-
grangian differential system and non-holonomic constraints adjoined via indefinite Lagrange multipliers.

Authors published the governing differential system using both approaches, see (Náprstek, 2013, 2017) and
compared their strengths and shortcomings. In the paper (Náprstek, 2017), a number of singular solutions of
homogeneous system have been found (no external excitation) for various settings of the non-homogeneous
initial conditions and used as limits separating solution groups of a certain character.

This paper is devoted to a system under several types of uni- and bi-axial kinematic excitation of the cavity
(non-homogeneous system, homogeneous initial conditions). The slipping-less movement of a ball on a
surface is supposed. Two different rolling and spin types of the damping are considered.
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2. Governing system

The Appell-Gibbs approach has been used to carry out the governing differential system modeling move-
ment of a ball inside of a spherical cavity, which is subdued to kinematic excitation in the horizontal plane.
For details, see references cited above. The differential system consists of three equation of motion and
three equation of non-holonomic constraints:

Jsω̇x −uCxΩ̇s = ( (üAy + ρ(ωzu̇Cx − ωxu̇Cz))(uCz −R)−
−uCy(g + ρ(ωxu̇Cy − ωyu̇Cx))) −DGx/m,

Jsω̇y −uCyΩ̇s = (−(üAx + ρ(ωyu̇Cz − ωzu̇Cy))(uCz −R)+

+uCx(g + ρ(ωxu̇Cy − ωyu̇Cx))) −DGy/m,

Jsω̇z −(uCz −R)Ω̇s = ( (üAx + ρ(ωyu̇Cz − ωzu̇Cy))uCy−
−(üAy + ρ(ωzu̇Cx − ωxu̇Cz))uCx) −DGx/m,

(1)

The meaning of Ω̇, Js and other quantities is as follows:

Ω̇s = uCxω̇x + uCyω̇y + (uCz −R)ω̇z ,

Js =
(J +mρ2R2)

mρ2
, where the numerator represents the mass inertia moment of the ball

with respect to center of the cavity,
uC − displacement vector in contact point C,
ω − ball rotation velocity in its center G,

DG − damping vector-viscous type (linear functions of) ω,
üA − kinematic excitation in point A - "southern pole" of the cavity, üAz = 0,

R, r − radius of the cavity and of the ball, respectively, R > r,
g − gravity constant
% = 1− r/R.

Fig. 1: Moving coordinate system

It can be shown that Ω̇ = 0 and therefore the 2nd
column on the left side of the system Eqs (1) can
be omitted. Provided we need investigate the re-
sponse processes in a vertical plane, then only one
component remains non-zero and the 2nd horizon-
tal excitation component vanishes as well. In order
to obtain the system Eqs (1) in the form with first
time derivatives concentrated on left side, the first
derivatives u̇C in its right sides should be expressed
in displacements uC using three non-holonomic
constraints:

u̇Cx = ωy(uCz −R)− ωzuCy,

u̇Cy = ωzuCx − ωx(uCz −R),

u̇Cz = ωxuCy − ωyuCx.

(2)

So we obtained the system of six non-linear ODEs
Eqs (1, 2) in normal form with six unknowns functions of time: uCx, uCy, uCz, ωx, ωy, ωz . Detailed behav-
ior of the ball as a rotating body is given by angular velocities ω. If the time history of rotation should be
traced, then a subsequent run is necessary to obtain rotations by means of Euler angles as solution of the
system of three ODEs with an input of angular velocities ω.

3. Response of the ball under harmonic excitation

This section is devoted to the case where the cavity undergoes harmonic kinematic excitation in the hori-
zontal plane (only one-direction excitation is reported here).

Two extensive series of tests demonstrate the auto-parametric character of the system. In the first series the
response has been evaluated separately for discrete excitation frequencies ω starting from the homogeneous
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Fig. 2: Response of the ball in the resonance and adjacent zones due to harmonic horizontal excitation of
the cavity; (a) amplitude of the displacement as a function of the excitation frequency; (b) vertical views of
the ball trajectory for frequencies ω = 2.84, 2.88, 2.92, 2.96.

��

(a) (b)

Fig. 3: Amplitudes of the ball displacement under cavity harmonic excitation, when the frequency is
swept up and down; (a) amplitudes overview in the interval ω ∈ (1.0, 8.0), (b) zooming in the interval
ω ∈ (2.4, 3.1); curves: solid red - max|uCx|, dashed red - max|uCy|, solid black - absolute displacement
amplitude, blue dashed - attraction boundary between bu1 and bl1.

initial conditions. Fig. 2 shows some selected results of numerical simulations which follow from the
differential system Eqs (1,2). We briefly point out a couple of features visible in Fig. 2. In the picture (a)
we can see the maximal horizontal amplitude of the ball trajectory, when the cavity is kinematically excited
in the horizontal plane in x direction. The solid curve represents max|uCx| and dashed curve is max|uCy|
as functions of the exciting frequency ω. We can see that in the interval ω ∈ (0, 2.84) the semi-trivial
solution is stable and so uCy = 0. The point ω = 2.84 is a beginning of the resonance zone, which spans
in ω ∈ (2.84, 2.99), where auto-parametric resonance occurs and amplitudes of both response components
are commeasurable. For ω > 2.99 the semi-trivial solution is regained. Samples of the trajectory shape are
plotted in the picture (b) for four frequencies ω = 2.84, 2.88, 2.92, 2.96. Their vertical views demonstrate
the character of the semi-trivial and the auto-parametric resonance states. Take a note, that the trajectory
since ω = 2.94 is a simple ellipse like curve, which does not exhibit any symptom of a chaotic process.
Compare this finding with analysis concerning the sweeping up and down excitation frequency for ω around
and above B2 bifurcation point (see Fig. 3 and explanation later in this section).

The second series has been controlled by sweeping of the excitation frequency up and down in a large
interval and in several detailed regimes in the area of the auto-parametric resonance zone. A few of results
are visible in the Fig. 3. The picture (a) demonstrates amplitudes max|uCx| (solid curves) and max|uCy|
(dashed curve) and the total amplitude uCr in the interval ω ∈ (1.0, 8.5). Picture (b) is the magnified detail
of the picture (a) within the interval ω ∈ (2.80, 3.05) in order to make visible the resonance zone.
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Let us pay attention to bifurcation points (BP). The most important reveal B1 and B2. In the latter one
two branches start. The lower one bl2 approaches zero for ω → ∞ which indicates the non-moving ball in
the vertical view. This branch is takes place in the vertical plane and basically has a form of semi-trivial
solution. Its stability increases with rising ω > ωB2 as it follows from decreasing negative values of the
Lyapunov exponent and of inspection of the relevant stability basins. The upper branch bu2 is spatial. It
follows from the resonance zone where the spatial response type has a chaotic character. The relevant
attractor reveals as an annular concentric area with diminishing width with increasing ω. The trajectory
approaches very quickly a circular form in the horizontal plane. Its level with respect to the vertical axis
rises and approaches "equatorial" position. However, the stability of this trajectory decreases and we can
see in the Fig. 3, that around ω = 8.0 even numerical perturbations of the integration process can overcome
the stability limit (despite of very small integration step) and the response trajectory falls down to the lower
branch in the point D2.

4. Conclusion

The presented contribution discuss movement of a heavy ball rolling inside a semi-spherical cavity under
horizontal kinematic excitation. This theoretical setup represents a ball type tuned mass damper as an
alternative to a pendulum based equipment. The non-linear mathematical model comprises six degrees of
freedom with three non-holonomic constraints. The equations of the motion of the ball are derived using the
Appel-Gibbs function of acceleration energy. This strategy proved better effectiveness than conventional
Lagrangian differential system and non-holonomic constraints adjoined via indefinite Lagrange multipliers.
A simple model of the damping mechanism has been incorporated into the Appel-Gibbs system.

The mathematical model is of auto-parametric type. It keeps in full the nonlinear character without any ap-
proximations. It was analytically and numerically analyzed with respect to harmonic horizontal excitation.
The interval of frequencies leading to instability of the semi-trivial solution was shown and studied in detail.
The basic limit cycles were shown and their dangerousness was mentioned. A wide analysis has been per-
formed regarding bifurcation mechanisms and past-bifurcation response branches. Emerging of important
limit states has been analyzed, when the excitation frequency is swept up and down. Dynamic stability of
individual branches related with increased and dropping excitation frequency has been carefully inspected
in the neighborhood of bifurcation points as well as in a far distance from them. It regards also both local
and global phenomena of stability keeping, loss and jumping between stable and unstable branches.
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