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Abstract: We consider problems of the acoustic wave propagation in an inviscid fluid through a rigid 
periodically perforated plate. Using the homogenization method the wave propagation in a layer containing 
the plate is replaced by transmission conditions which couple the acoustic field on both sides of the plate 
represented by a flat interface. The interface impedance depends of the shape of the perforation. For 
suitable shapes of the holes, there is a coupling between transverse and surface acoustic waves propagating 
along the panel. The derived model leads to a significant savings in the computational cost of the numerical 
solutions.
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1. Introduction

In this work we present a reduced model of the acoustic transmission on perforated plates. We pursue the
approach proposed in Rohan and Lukeš (2010); therein, the homogenization of the Helmholtz equation in a
layer perforated by rigid obstacles was treated to derive an effective model of the acoustic wave propagation
in the so-called transmission layer. Before, in Bonnet-Bendhia et.al. (2005), only very thin perforated rigid
sheets were considered. As an alternative to the approach employed in Marigo and Maurel (2016), we de-
rived non-local transmission conditions which take into account the perforation geometry in a rigorous way.
The new achievement reported in this article concerns with an improved version of these interface condi-
tions which, besides the jump in the acoustic potential, also involve mean transverse acoustic momentum
and its jump. The present approach can be adapted for modelling vibro-acoustic transmission on perforated
compliant panels, as considered in Rohan and Lukeš (2013) in the context of the optimal perforation design
problem.

We consider acoustic waves in an inviscid fluid characterized by the sound speed c, propagating with a
frequency ω in a duct containing a perforated rigid plate. The homogenization method is applied to the
Helmholtz equation governing the acoustic potential distributed in a fictitious layer Ωδ ⊂ ΩG in which the
perforated plate is embedded; the size of the perforation is ≈ ε. The asymptotic analysis is performed for
the thickness δ = κε → 0 with a fixed κ > 0, so that also the size of the holes in the plate tends to zero.
This yields transmission conditions applied on the interface Γ0 associated with the mid-plane of the layer
Ωδ. These conditions allow us to describe waves propagating in two domains Ω+ and Ω− separated by the
homogenized perforated plate represented by Γ0 = ∂Ω+ ∩ ∂Ω−. The solutions of the global problem in
domain ΩG = Ω+∪Ω−∪Γ0 are decomposed into a “background” field P 0 which disregards the perforated
interface, cf. e.g. Bonnet-Bendhia et.al. (2005), and the first-order correction δ0P

1 which is computed using
the interface conditions, whereby finite thickness δ0 = κε0 > 0 of the layer is considered.

2. Problem formulation and decomposition

In this section, we introduce the problem of acoustic waves in a domain ΩG with embedded perforated
rigid plate Σε. We consider a fictitious transmission layer Ωδ with a thickness δ > 0, such that Σε ⊂ Ωδ.
The plate thickness is hε = εh̄ < δ, while the layer thickness δ = κε for a given fixed κ > 0. Given
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** Ing. Vladimı́r Lukeš, Ph.D.: NTIS New Technologies for Information Society, Department of mechanics Faculty of Applied
Sciences, University of West Bohemia in Pilsen, Univerzitnı́ 22, 306 14 Plzeň; CZ, e-mail: vlukes@kme.zcu.cz
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Fig. 1: Scheme of the transmission layer with periodically distribute obstacles; The layer thickness δ = κε,
the obstacles (or the perforated plate) are embedded in layer of the thickness hε = εh.

a bounded 2D manifold Γ0 ⊂ {x ∈ ΩG|x3 = 0} representing the plate mid-plane, we introduce Ωδ =
Γ0×] − δ/2, δ/2[⊂ ΩG, an open domain representing the transmission layer. This enables to decompose
ΩG into three non-overlapping parts, as follows: ΩG = Ωδ ∪ Ω+

δ ∪ Ω−δ . Thus, the transmission layer is
bounded by ∂Ωδ which splits into three parts:

∂Ωδ = Γ+
δ ∪ Γ−δ ∪ ∂extΩδ , Γ±δ = Γ0 ±

δ

2
~e3 , ∂extΩδ = ∂Γ0×]− δ/2, δ/2[ , (1)

where δ > 0 is the layer thickness and ~e3 = (0, 0, 1), see Fig. 1. In the context of the transmission layer
definition, we consider the plate as a 3D domain Σε generated using a representative structure as a periodic
lattice.

The global acoustic problem can be split into two parts: 1) the out-of-layer problem imposed in subdomains
Ω+
δ and Ω−δ governs the acoustic potential P δ; 2) the problem imposed in the layer, where pε is the acoustic

potential in the fluid part Ω∗εδ = Ωδ \ Σε. Further, by iωgε± we denote the acoustic fluid velocity projected
into the normal of the interfaces Γ±δ . The following subproblems are considered:

1. Given p̂ε on Γ±δ , find P δ defined in ΩG
δ = Ω+

δ ∪ Ω−δ , such that

c2∇2P δ + ω2P δ = 0 in Ω+
δ ∪ Ω−δ , P δ = p̂ε on Γ±δ , (2)

supplemented by boundary conditions riωcP δ+c2 ∂P δ

∂n = s2iωcp̄ imposed on the “external” boundary
∂extΩ

G
δ = ∂ΩG ∩ (∂Ω+

δ ∪ ∂Ω−δ ), where r and s are constants attaining values 0, or 1, whereas p̄ is
the amplitude of an incident wave.

2. Given gε± on Γ±δ , find pε in Ω∗εδ and uε in Σε, such that

c2∇2pε + ω2pε = 0 in Ω∗εδ ,
∂pε

∂n
= −iωgε± on Γ±δ ,

∂pε

∂n
= 0 , on ∂Ω∗εδ ∩ Ωδ . (3)

The two subproblems are coupled by the following conditions imposed on Γ±δ ,

iωgε± =
∂P δ

∂n±
and pε = p̂ε = P δ , (4)

where n± refers to normals n± outer to domains Ω±δ .

3. Homogenized transmission conditions and the global problem

In Rohan and Lukeš (2010), using the asymptotic analysis of problem (3) for ε → 0, we derived the limit
problem in the homogenized layer represented by Γ0. The limit acoustic potential p0 ∈ H1(Γ0) solves the
limit Helmholtz equation,
∫

Γ0

(A∇xp0) · ∇xq0 − ω2

c2

∫

Γ0

p0q0 + iω

∫

Γ0

∇xq0 · B∂P
0

∂n
= −iω

∫

Γ0

q0[ḡ1±]+− , ∀q0 ∈ H1(Γ0) , (5)

where ∇x = (∂α) is the “in-plane” gradient, A = (Aαβ) is the acoustic velocity anisotropy and B = (Bα)
is a coupling vector; both A and B depend on the characteristic responses of the local “cell problems”
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which depend on the perforation geometry. Functions g0 and ḡ1± represent the mean transverse acoustic
momentum and its deviations on the upper and lower surfaces of the layer, respectively.

The acoustic field in domain ΩG is obtained as the limit of P δ(x) = P 0,δ(x)+δP 1,δ(x)+ . . . for δ → 0 the
out-of-layer problem (2) with conditions (4). It can be proved that for the limit problem governing P 0 the
limit transmission layer is totally transparent, so that there is no influence of the perforated plate. However,
the first-order correction P 1 can be computed; for a given ε0 > 0, hence δ0 = κε0, the total response in
ΩG
δ0

is given (approximated) by P δ0 ≈ P 0 + δ0P
1. In contrast with P 0 ∈ H1(ΩG) being continuous on Γ0

representing the limit transmission layer, P 1 ∈ H1(Ω+∪Ω−) is discontinuous on Γ0. Further we introduce
the following subdomains Ω+

s and Ω−s , and the off-set planes, Γ+
s and Γ−s , such that

Ω+/−
s = {x ∈ Ω+/− | dist(x,Γ0) < s} ,

Γ+/−
s = {x ∈ ∂Ω+/−

s | dist(x,Γ0) = s} ,
(6)

where s > 0 can be small; it determines the width of two layers attached to Γ0 in which the following jump
function ϑ+/− is supported. For any x ∈ Ω

+/−
s we define ξ = dist(x,Γ0) and the projection point x0 ∈ Γ0

of x, such that x = x0 ± ξn0, where n0 is the unit normal at Γ0, outward to Ω−. By P̂ = [P 1]+− we denote
the jump on Γ0 and define

ϑ±(x) = ±1

2
P̂ (x0)χ̄±(x)ϑ̂(x) , ϑ̂ ∈ H1(Ω) ,

ϑ̂(x) =





1 for x ∈ Γ0 ,
0 for x ∈ Γs+/−
0 for x ∈ Ω \ (Ω+

s ∪ Ω−s ) ,

(7)

where χ̄±(x) is the characteristic function on Ω
+/−
s , i.e. χ̄+(x) = 1 for x ∈ Ω+

s and χ̄+(x) = 0 for x ∈
Ω \Ω+

s ; for χ̄−, the definition is reciprocal. A simplest possible choice is ϑ̂(x) = 1− dist(x,Γ0)/s. Using
ϑ+/−, we can express P 1 in terms of a smooth function P̃ ∈ H1(Ω), such that P 1(x) = P̃ (x) + ϑ+/−(x)
for x ∈ Ω+/−.

To compute P 1, we proceed by evaluating the jumps P̂ and Ĝ, the latter representing discontinuity in the
first order transverse acoustic momentum. Both these variables depend on P 0 describing the global acoustic
field without any influence of the perforated plate. The following two identities hold,

κ
∫

Γ0

P̂ψ =

∫

Γ0

ψD · ∇P 0 for all ψ ∈ L2(Γ0) ,

ω2

∫

Γ0

q0Ĝ = iωH0(P 0, q0)− ω2c2

∫

Γ0

∇xq0 · B∂P
0

∂n
, for all q0 ∈ H1(Γ0) ,

(8)

where D = (B,−F ) involves the transverse impedance F depending on the perforation geometry of the
plate, and

H0(P 0, q0) = c2

∫

Γ0

(A∇xP 0) · ∇xq0 − ω2

∫

Γ0

P 0q0 . (9)

The couple (P̂ , Ĝ) is involved in the problem for P̃ ∈ H1(Ω) satisfying

HG(P̃ , Q) = iω

∫

Γ0

ĜQ−H+(ϑ+, Q)−H−(ϑ−, Q) ∀Q ∈ H1(Ω) , (10)

where (� is to be replaced by plus +, or minus −),

H�(P,Q) = c2

∫

Ω�
∇P · ∇Q− ω2

∫

Ω�
PQ+ riωc

∫

∂Ω�∩∂ΩG
PQ . (11)
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Fig. 2: Distribution of the acoustic potential in a duct: Left: P 0, no effect of the perforated plate. Right: 
Total acoustic potential P 0 + δ0P 1 influenced by the perforated interface.

4. Numerical illustration

The homogenized model of the transmission layer yield the two interface variables (P̂ , Ĝ) as the solution 
of (8) which has been implemented by the finite element method. To obtain coefficients A, B and F , we 
considered a plate of thickness h0 = 1.5 mm perforated by cylindrical holes with diameter d0 = 1.5 mm, 
which correspond to the scale parameter ε0 = 0.0125. For illustration of the proposed modelling approach 
based on the homogenized interface model, we consider a duct in which the perforated plate is fitted. We 
consider a 2D problem, such that periodic boundary conditions are prescribed on faces limiting this slice 
represented as a 3D structure in Fig. 2. The global acoustic problem possessing P 0 was solved for a plane 
wave at the input, whereas non-reflection conditions were considered at the output. In Fig. 2, the global 
acoustic filed P δ0 is displayed as well as the “background” field P 0 which is independent of the perforated 
interface.

5. Conclusions

We presented a homogenized model of the acoustic transmission on a perforated plate, as an alternative to 
existing works Rohan and Lukeš (2010), cf. Marigo and Maurel (2016). The global response is constituted 
by the solution P 0 of the acoustic problem disregarding the interface and by δ0 multiple of the perturbation 
P 1 computed using the gradient ∇P 0 evaluated at the interface Γ0. The proposed modelling approach is 
based on the rigorous asymptotic analysis of the acoustic field in the layer and the conditions related to the 
fictitious interfaces between the layer and the outer domains. Extensions for the vibroacoustic problems 
with deformable plates will be considered in the future, cf. Rohan and Lukeš (2013).
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