
1. Introduction

This paper provides a theoretical background for crack initialization and propagation model for multilayer
laminated glass beams by investigating damage evolution in a single glass layer subjected to deflection.
The principles of variational phase-field formulation and the Von Kármán member for large deflections are
exploited. In context of beam elements, we consider damage d being 1D scalar field depending on position
variable x only. The phase-field approach to damage on beams is derived in footsteps of Kiendl (2016).

2. 1D Phase-field formulation of brittle fracture

The solution of crack propagation can be governed by variational formulation. The energy functional, which
is being minimized, is given in the Griffith sense by

E(ε,Γ) =

∫

Ω
Ψ(ε)dΩ +Gc

∫

Γ
dΓ, (1)

where Ω is the problem domain, Γ ⊂ Ω is the internal discontinuity boundary, Ψ is the elastic energy
density dependent on an actual strain ε and Gc is energy dissipated when unit of fracture surface is created.
The Griffith approach assumes pefrectly sharp crack and non-smooth course of damage, while the phase-
field formulation approximates smeared damage field over domain (−∞,∞). Figure 1 represents such that
distribution of damage field d around the crack at point x = 0. Value d = 0 stands for unbroken state and
d = 1 for fully broken state. The damage field approximation is given by an exponential function proposed
by Miehe (2010)
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Fig. 1: The distribution of damage parameter d around crack at x = 0

d(x) = e−|x|/2lcr , (2)

where lcr is the characteristic length or length of the process zone. We can observe that equation (2) is the
solution of boundary value problem

d− 4l2crd
′′(x) = 0, d(0) = 1, d(±∞) = 0. (3)

According to the Hamilton’s principle this equation is given by Euler-Lagrange equation of action integral

S(d) =

∫

Ω

1

4
d2 + l2cr|d′(x)|2dΩ. (4)

It can be shown that the integrand divided by lcr represents crack density and the action integral represent
volume approximation of crack surface, so

Γ =

∫

Γ
dΓ ≈ 1

lcr
S(d), (5)

and the governing functional becomes

E(ε, d) =

∫

Ω
Ψ(ε)dΩ +Gc

∫

Ω

1

4lcr
d2 + lcr|d′(x)|2dΩ =

∫

Ω
L dΩ. (6)

For realistic modeling of damage it is convenient decompose the strain tensor into the tensile and compres-
sive parts. Similarly, we decompose the elastic density function

Ψ(ε, d) = g(s)Ψ+(ε) + Ψ−(ε), (7)

where only the tensile part is degraded by the degradation function g(s). We employ the degradation
function from Miehe (2010)

g(s) = (1− η)s2 + η, (8)

where we use rather the damage parameter s(x) = 1− d(x) than d(x). The quadratic form of equation (8)
provides an lower bound of the phase-field s. The parameter η represents residual stiffness factor, which
ensures well-posed problem. Now the Hamilton’s principle gives us the governing equations of the system
by minimization of the phase field s and deformation ε via Euler-Lagrange equations which hold

div

(
g(s)

∂Ψ+(ε)

∂ε
+
∂Ψ−(ε)

∂ε

)
= 0, (9)

(
4lcr(1− η)H

Gc
+ 1

)
s− 4l2crs

′′(x) = 1. (10)

The history variable H is given by H = max Ψ+(τ) across all times τ ∈ 〈0, t〉. The variable H ensures
irreversibility of damage.

3. Phase-field fracture for beams

For beams formulation we employ the Mindlin beam theory, which gives to us the following energy density
function

Ψ(ε) =
1

2
εijσij =

1

2
(εxσx + γxzτxz) =

1

2

(
Eε2

x +Gγ2
xz

)
, (11)
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Fig. 2: Course of strain and stress on cross section with tensile degradation

and the normal strain of cross section in x direction of the beam centerline

εx(x) = u′0(x) + ϕ′(x)z, (12)

where u0(x) is the centerline longitudinal displacement caused by a membrane forces and ϕ(x) is a sec-
tional rotation. The height zN where εx = 0 splits the cross-section on two parts, which one is in the
compression and other is in tension. If we define such split, we can tensil part reduce by the degradation
function g(s). This is illustrated in figure 2, where first picture represents the distribution of strain along
height and the second picture shows the evolution of normal stress along height. The last picture defines
variables b, h, the position of neutral axis zN and axis direction on the cross section. The stored elastic
energy then reads

∫

Ω
Ψ(ε)dΩ =

b

2

∫ L

0
ξ±(−h

2
, zN )

∫ zN

−h/2
Eε2

x +Gγ2
xzdz + ξ±(zN ,

h

2
)

∫ h/2

zN

Eε2
x +Gγ2

xzdzdx, (13)

where ξ(a, b) acquires two values

ξ±(a, b) =

{
g(s) if cross-section between z = a and z = b is in tension,
1 otherwise,

(14)

and the neutral axis position is derived from the the equation (12) and holds

zN (x) = −u
′
0(x)

ϕ′(x)
. (15)

The equation (13) and the values of ξ± define division of the energy density function Ψ to tensile and
compressive parts. Members, where the degradation function g(s) appears, belongs to the tension part Ψ+

and members without the degradation function belongs to Ψ−. We note that this formulation only applies
to small shear.

4. FEM formulation of beams

The finite element formulation is derived in standard way. Unknown fields are approximated by matrix of
base functions N and the gradients are approximated by geometric matrix B. For the generalized displace-
ment field ue(x) and the damage field se(x) on one finite element e it reads

ue(x) ≈ Ne
u(x)reu, εe ≈ ∂ue(x)

∂x ≈ Be
u(x)reu, (16)

se(x) ≈ Ne
s(x)res, s′(x) ≈ Be

s(x)res, (17)

where re are vectors of nodal values. With these base functions, the weak form of governing equations
(9)-(10) on element e have the following discrete form

(
(1− η)(res)

TM2r
e
s + η

) ∂Ψ+(reu)

∂reu
+
∂Ψ−(reu)

∂reu
= 0, (18)
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(
4lcr(1− η)H

bhGc
+ 1

)
M2r

e
s + 4l2crM1r

e
s =

∫

Le
(Ne

s)
TdLe, (19)

where matrices M1 and M2 are defined as

M1 =

∫

Le
(Be)TBe dLe, M2 =

∫

Le
(Ne)TNe dLe. (20)

The equations (18)-(19) for the case of linear elasticity can be both expressed in linear form

Kuru = Ru, Ksrs = Rs, (21)

where Ru is the vector of external nodal forces and Rs is the right hand side of equation (19). The forms
of stiffness matrix Ku and the form of system matrix Ks are obvious from the equations (18)-(19). In the
stagger approach, these matrix equations are independent. If we solve kru for k-th iterative step we assume
fixed k−1rs from history and vice versa for the field krs is kru fixed. For given external loads we iterate
through k until both fields are stationary.

5. Von Kármán formulation

To consider large deflection and small strains we add the Von Kármán term into the expression of normal
strain, which modifies only equation (12) to the shape

εx(x) = u′0(x) + ϕ′(x)z +
1

2

(
w′(x)

)2
, (22)

where w(x) is deflection in z direction. It complicates situation, because the discrete form (18) can not be
expressed in the linear form where stiffness matrix is independent of ru. The numerical method must be
utilized. Using the iterative Newton method, we can express next iterative step m by the following identity

m+1ru = mru + δ mru, (23)

where the increment δ mru equals to

δ mru =
(
KNL

u

)−1
(R(mru)−Rs) , (24)

and KNL
u represents the tangential matrix and bracket (R(mru)−Rs) represents the vector of unbalanced

forces. The tangential matrix can be obtained as the Hessian matrix of functional Ψ. In discrete form it
reads

KNL
u =

(
(1− η)(res)

TM2r
e
s + η

) ∂2Ψ+( mreu)

(∂ mreu)2 +
∂2Ψ−( mreu)

(∂ mreu)2 . (25)

The discrete form (19) remains unchanged and iteration process is still valid. However each vector kru is 
obtained through an inner iteration process described by the equation (23).

6. Conclusion

The paper introduces variational based damage phase-field formulation for beams and plates and extends 
it for large deflection beams. Von Kármán term is employed in strain equation for beams. Consequently, 
inner iteration process for displacement field is needed. Update of damage field remains without changes.
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