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Abstract: This paper describes the creation of a new motion function for the needle rack of the CAM EL
weaving machine. The shape of the acceleration motion function curve is defined by a set of seven control
points. Derived equations have been used in the creation of a computer program, which simulates the motion
of the needle rack. Using the newly designed motion function, a significant reduction of the maximum torque
of the actuator has been achieved.

Keywords: weaving machine, motion function, optimization of motion, kinematics, approximation

1. Introduction

CAM-EL is a weaving machine for the manufacture of fabrics produced by VUTS. An updated version of
this machine which is expected to increase productivity by 25% is currently being developed. Part of the
weaving machine is the needle drive mechanism that will be addressed in this paper (Figure 1).

Analysis of the model of the needle assembly from the servomotor to the actual needle showed that even
a small change in the stroke dependence u(t) has a significant impact on the size of the maximum torque
of the actuator M = M(u, u̇, ü). That is why we want to optimize the existing dependency ratio u(t). We
require that the required driving torque is minimal and at the same time keep the machine running smoothly
without the need for unnecessary impacts (Jirásko, 2015), so that the stroke is sufficiently smooth (Koloc,
1988).
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Fig. 1: The needle rack system

A function made up of fifth order polynomials with continuous derivatives to the 5th order will be considered
sufficiently smooth. For the design of the lifting dependence, it is preferable to approximate its second time
derivative (acceleration) which is represented by polynomials of the third order with condition of connection
in the first and second derivatives by cubic spline.

We therefore implement an approximation function f (x) which is an accelerated image ü, defined on the
interval x ∈ 〈0, 1〉. We also choose f (x) as symmetric to [0.5, 0]. By normalizing the approximate function
so that its second integral at the end of the interval is equal to 1, we obtain the unit function of the stroke
u◦(x). Coefficients describing this function can be easily used to program the control unit of the actuator.
For future use, the shape of an approximation function is generated on the basis of the selected definition
points by which f (x) passes. These points will later be generated automatically by optimization algorithms.
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2. Definition of the definition points and the approximation function

All points of the set defined on the interval 〈0, 0.5〉 in direction of x and the interval 〈0, 1〉 in direction of y
will be called definition points, see Fig. 1. Each of these points has coordinates [Xj , Yj ] , where j = 1..N
denotes the order of the point given its distance from origin in direction of the x axis. For practical reasons,
count of the definition points was chosen to be N = 7.
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Fig. 2: Definition points

The function f(x) must pass through points [0, 0], [0.5, 0] and [1, 0]. Considering the above mentioned
symmetry, we will, until further notice, focus on the left side of the function f (x), therefore x = 〈0, 0.5〉.

3. Approximation function

A function passing through an interval j can be written as

fj (x) = b1,j + b2,jx+ b3,jx
2 + b4,jx

3,

where bk,j are unknown constants.

For the description of the function f(x) it is necessary to find all the constants bk,j , where k = 1..4 and
j = 1..N − 1 = 1..6. This totals to 24 unknown values bk,j . By using standard tools for approximation by
cubic spline it is possible to determine the coefficients. The only unknown is the estimate of the derivation
in the centre of interval D.

The point nr. 7 is the point of symmetry of the function f(x). We fit third degree polynomial to the points
5, 6 and their symmetrical images.

g(x) = B1 +B2x+B3x
2 +B4x

3,

where B1, B2, B3 a B4 are unknown constants. The desired value D can be expressed as

D =
dg (x)

dx

∣∣∣∣
x=0.5

.

Because g(x) must pass through the above mentioned points, it is possible to write the system of four
equations

g (X5) = Y5
g (X6) = Y6
g (1−X5) = −Y5
g (1−X6) = −Y6.
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The solution are constants B1, . . . , B4. As we now know the whole function g(x), using B1..B4 derivative
of this function at point [0.5, 0] can be expressed as

dg (x)
dx

∣∣∣∣
x=0.5

=
8X5

3Y6 − 8X6
3Y5 − 12X5

2Y6 + 12X6
2Y5 + 6X5Y6 − 6X6Y5 + Y5 − Y6

2 (2X6 − 1)
(
2X5

3 − 2X5X6
2 − 3X5

2 + 2X5X6 +X6
2 +X5 −X6

) .

4. Scale of the amplitude

The approximation function f(x) is an input for derivation of unit motion function u◦(x), acceleration of
which has the same form as f(x). For the unit motion function, the following condition must be met

u◦(0) = 0 ∧ u◦(1) = 1.

Define an approximated velocity F I
j and an approximated motion F II

j on jth interval using known function
fj (x)

fj (x) =
dF I

j

dx
a F I

j =
dF II

j

dx
.

Using separation of variables on the first expression and then integrating over the full jth interval, it is
possible to derive value of the velocity at the end of the jth interval

F I
j (xj+1) = F I

j (xj) +

xj+1∫

xj

fj (x) dx.

It is obvious, that the velocity at the end of the interval depends not only on function fj (x), but also on
the velocity at the beginning of the interval F I

j (xj). Choose zero velocity for the first point [0, 0], i.e.
F I
1 (0) = 0. In an analogous manner, we derive the function of velocity inside the jth interval.

F I
j (x) = F I

j (xj) +

x∫

xj

fj (x) dx.

Since the function f(x) is symmetric and velocity at the beginning and at the end of the process is equal to
zero, it is sufficient to address only one half of the interval.

Separating and subsequent integrating the expression

F I
j =

dF II
j

dx

over the full jth interval, we derive expressions for calculation of deflection at the end of the interval

F II
j (xj+1) = F II

j (xj) +

xj+1∫

xj

F I
j (x) dx.

and integrating from the beginning of the jth interval to a general position inside of this interval, we get the
function of the deflection

F II
j (x) = F II

j (xj) +

x∫

xj

F I
j (x) dx.

For the first point, set the deflection to zero

F II
1 (0) = 0.
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With respect to the symmetry and the set initial conditions, the trajectory in the middle of the interval
F II
6 (0.5) is exactly equal one half of the total trajectory

F II
12(1) = 2F II

6 (0.5)

and therefore it is sufficient to integrate only on the interval x = 0..0.5. After performing all of the
operations, we get one half of the motion at the acceleration f(x). This motion depends only on the
definition points and the already calculated values bk,j .

The number F II
12(1) is the demanded value of the scale between F II(x) and the unit motion u◦(x) and it is

valid given that

u◦(x) =
1

F II
12(1)

F II(x).

5. Practical use

All quantities are derived strictly analytically and they react to the change of the point very quickly. This
is suitable for future usage in automatic task optimization and inserted into the machine control program.
Using the above mentioned knowledge, new software has been developed, which allows an easy manual
manipulation with the definition points and immediately shows the necessary moment. It also enables the
behavior of the function of deflection to be displayed, as well as velocity, acceleration and power. A great
advantage of the newly designed software is its capability to export the coefficients bk,j into a text file.
These files can be directly used for setting the control circuit of the servomotor. Comparison of the original
solutions and the newly found solutions are shown in the Table 1 and Figure 3.

Tab. 1: Comparison of maximal moments of the servomotor

main shaft speed max. original moment new max. moment

600 [1/min] 5[Nm] 2.2[Nm]

750 [1/min] 9.2[Nm] 4.2[Nm]
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Fig. 3: Original (solid line) and new (dashed line) creation curve, expressed using definition points (on the
left) and corresponding moment for the main shaft speed 600[1/min] (on the right).
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