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SENSITIVITY ANALYSIS IN OPTIMAL DESIGN OF COMPOSITE 
STRUCTURES WITH CURVILINEAR FIBRES 
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Abstract: Sensitivity analysis of composite structures with curvilinear fibres is considered in the paper. 
Fibres orientation and  fibres volume are taken as design parameters. General functionals of kinematic fields 
are analyzed. Sensitivity formulas are expressed in terms of primary and adjoint states. Next, sensitivity 
coefficients are used in the incremental process of optimization. Numerical example illustrates applicability 
of the proposed method. 
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1. Introduction 

Structural design is concerned with an appropriate choice and determination of design parameters 
describing a structure. The structure has to fulfil constraints imposed on the admissible stress, 
displacement, stability as well as geometrical and technological limitations. However, the choice and 
determination of structural parameters is not unique. One can design many kinds of structures which fulfil 
imposed constrains but differ with respect to their weight or manufacturing cost. Thus, in order to obtain 
optimal or improved solution optimization procedures should be implemented.  

In the current paper, the method of optimization of composite plates is presented. The hitherto existing 
literature on optimization of composite plates deals mostly with stacking sequence, fibre orientation or 
plies thickness optimization. But also optimization of composites with curve fibres (Muc and Ulatowska, 
2010), optimization of variable thickness composites (Muc, 2017) or optimization of variable density 
composites (Pedersen, 2004), are gaining more and more popularity. Here, an attempt for simultaneous 
fibres volume and fibres orientation optimization is undertaken (Fig. 1). 

x1

x2

x1'x 2'

T0

u

T

p0

u0
 

Fig. 1: Scheme of the plate. 
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2. Sensitivity analysis 

Consider now a plate occupying domain 𝛺 ⊂ 𝑅2, with the boundary 𝛤 = 𝛤𝑢 + 𝛤𝑇 (Fig. 1).  
On 𝛤𝑇 tractions T0 are given and on 𝛤𝑢 displacement u0 are specified. Moreover, the plate is loaded in 𝛺 
by volume forces p0. Let us assume, that the following functional is defined in the plate domain 

𝐺 = ∫ 𝐹(𝛆,𝐮,𝛙)𝑑𝛺 + ∫ 𝑔(𝐮)𝑑𝛤𝑇,𝛤𝑇𝛺                                            (1)  

where F is a function of strains 𝛆, displacements 𝐮 and design parameters 𝛙, while g is a function of 
displacements u. Vector of design parameters may contain topological, material, dimensional parameters, 
etc. But now, let us assume that the plate domain 𝛺 is fixed, thus the shape of the plate does not undergo 
any changes. The first variation of the functional (1) with respect to material and topological parameters 
is expressed as follows 

𝛿𝐺 = ∫ �𝜕𝐹
𝜕𝛆
∙ 𝛿𝛆 + 𝜕𝐹

𝜕𝐮
∙ 𝛿𝐮 + 𝜕𝐹

𝜕𝛙
∙ 𝛿𝛙�𝑑𝛺 + ∫ 𝜕𝑔

𝜕𝐮
∙ 𝛿𝐮𝑑𝛤𝑇.𝛤𝑇𝛺                    (2)  

Let us introduce the adjoint system of the following form (cf. Bojczuk and Szteleblak, 2008) 

𝐍𝑎𝑖 = 𝜕𝐹
𝜕𝛆

 ,     𝐩𝑎0 = 𝜕𝐹
𝜕𝐮

 in 𝛺      𝐓𝑎0 = 𝜕𝑔
𝜕𝐮

 on 𝛤𝑇,     𝐮𝑎0 = 𝟎 on 𝛤𝑢.              (3) 

Now, the variation (2) becomes 

𝛿𝐺 = ∫ �𝐍𝑎𝑖 ∙ 𝛿𝛆 + 𝐩𝑎0 ∙ 𝛿𝐮 + 𝜕𝐹
𝜕𝛙

∙ 𝛿𝛙�𝑑𝛺 + ∫ 𝐓𝑎0 ∙ 𝛿𝐮𝑑𝛤𝑇.𝛤𝑇𝛺                 (4) 

In order to eliminate the unknown variations 𝛿𝐮 and 𝛿𝛆, the principle of virtual work can be used 

                                       ∫ 𝐍𝑎𝑟 ∙ 𝛿𝛆𝑑𝛺 = ∫ 𝐩𝑎0 ∙ 𝛿𝐮𝑑𝛺𝛺 + ∫ 𝐓𝑎0 ∙ 𝛿𝐮𝑑𝛤𝑇𝛤𝑇𝛺 ,                           (5) 

as well as the principle of complementary virtual  work 

                 ∫ 𝛆𝑎 ∙ 𝛿𝐍𝑑𝛺 = ∫ 𝐮𝑎0 ∙ 𝛿𝐓𝑑𝛤𝑢𝛤𝑢
+ ∫ 𝐮𝑎 ∙ 𝛿𝐓0𝑑𝛤𝑇 + ∫ 𝐮𝑎 ∙ 𝛿𝐩0𝑑𝛺𝛺𝛤𝑇𝛺 .             (6)  

Taking into account that variation of internal forces is as follows 

𝛿𝐍 = δ(𝐀𝛆) = δ𝐀𝛆 + 𝐀δ𝛆,                                              (7) 

and using homogenous boundary condition (3)4, the principle of complementary virtual work can be 
written in the form 

∫ 𝐍𝑎 ∙ 𝛿𝛆𝑑𝛺 = −∫ 𝛆𝑇 ∙ 𝛿𝐀𝛆𝑎𝑑𝛺𝛺 + ∫ 𝐮𝑎 ∙ 𝛿𝐓0𝑑𝛤𝑇 + ∫ 𝐮𝑎 ∙ 𝛿𝐩0𝑑𝛺𝛺𝛤𝑇𝛺 .           (8) 

By an application of (5) and (8), the first variation of the functional (1) takes the following form 

𝛿𝐺 = ∫ �𝜕𝐹
𝜕𝛙

∙ 𝛿𝛙 − 𝛆𝑇𝛿𝐀𝛆𝑎 + 𝐮𝑎 ∙ 𝛿𝐩0�𝑑𝛺 + ∫ 𝐮𝑎 ∙ 𝛿𝐓0𝑑𝛤𝑇.𝛤𝑇𝛺                     (9) 

If external load is fixed, it simplifies to 

𝛿𝐺 = ∫ �𝜕𝐹
𝜕𝛙

∙ 𝛿𝛙 − 𝛆𝑇𝛿𝐀𝛆𝑎�𝑑𝛺𝛺 .                                          (10) 

It often occurs that only some subdomain 𝜔 of a plate domain 𝛺 undergoes changes, then the above 
variation is as follows 

𝛿𝐺 = ∫ �𝜕𝐹
𝜕𝛙

∙ 𝛿𝛙 − 𝛆𝑇𝛿𝐀𝛆𝑎�𝑑𝜔𝜔 .                                         (11) 

When functional G represents potential energy, we have 

                                          𝐺 = ∫ 1
2
𝐍 ∙ 𝛆𝑑𝜔 − ∫ 𝐩0 ∙ 𝐮𝑑𝜔𝜔 − ∫ 𝐓0 ∙ 𝐮𝑑𝛤𝑇𝜔 𝛤𝑇 = 

                              = ∫ 1
2
𝛆𝑇𝐀𝛆𝑑𝜔 − ∫ 𝐩0 ∙ 𝐮𝑑𝜔𝜔 − ∫ 𝐓0 ∙ 𝐮𝑑𝛤𝑇𝜔 𝛤𝑇,                             (12) 

and the adjoint system has the following structure 

 𝐓𝑎0 = −𝐓0,  𝐩𝑎0 = −𝐩0, 𝐮𝑎0 = 𝟎,  𝐍𝑎𝑖 = 𝐍,  𝐍𝑎𝑟 = −𝐍 ,   
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 𝐍𝑎 = 𝛆𝑎 = 𝐮𝑎 = 𝟎.                                                        (13) 

In this case, variation of the functional G becomes  

𝛿𝐺 = 1
2 ∫ 𝛆𝑇 𝜕𝐀

𝜕𝛙
𝛿𝛙𝛆𝑑𝜔𝜔 .                                                   (14) 

As it is seen, this time no adjoint structure needs to be solved. In the next step, in order to calculate 
sensitivity of the potential energy, stiffness matrix A derivatives with respect to design parameters 𝛙 
should be introduced. Let us first write constitutive relation for composite layer of thickness h. It can be 
written as follows 𝐍 = 𝐀𝛆, but 𝐀 = ℎ𝐐 and hence 

�
𝜎1
𝜎2
𝜎6
� = �

𝑄11 𝑄12 0
𝑄21 𝑄22 0

0 0 𝑄66
� �
𝜀1
𝜀2
𝜀6
�.                                             (15) 

Components of stiffness matrix, written in terms of composite material constants can be expressed as 

𝑄11 = 𝐸1
1−𝜐12𝜐21

,    𝑄22 = 𝐸2
1−𝜐12𝜐21

,   𝑄12 = 𝑄21 = 𝜐21𝐸1
1−𝜐12𝜐21

,   𝑄66 = 𝑄12.                (16) 

Composite material constants can be calculated in the following way, involving material constants of 
fibre and matrix 

 𝐸1 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚,    𝐸2 = 𝐸𝑓𝐸𝑚
𝑉𝑚𝐸𝑓+𝑉𝑓𝐸𝑚

, 

𝜐12 = 𝜐𝑓𝑉𝑓 + 𝜐𝑚𝑉𝑚,    𝜐21 = 𝐸2
𝐸1
𝜐12,    𝐺12 = 𝐺𝑓𝐺𝑚

𝑉𝑓𝐺𝑚+𝑉𝑚𝐺𝑓
  .                   (17) 

When rotated coordinate system is used, stiffness matrix must be transformed according to 

𝐐 = 𝐓T𝐐𝐓,                                                         (18) 

where 

𝐓 = �
cos2α sin2α cosαsinα
sin2α cos2α −cosαsinα

−2cosαsinα 2cosαsinα cos2α − sin2α
�.                        (19) 

Now, we must calculate derivations of stiffness matrix with respect to design variables, which in our case 
are specific fibre volume Vf (x) and fibre orientation angle α(x), 𝐱 ∈ 𝛺. Thus, the following variations of 
the potential energy should be specified 

𝛿𝐺𝑣𝑓 = 1
2 ∫ 𝛆𝑇 𝜕𝐀

𝜕𝑉𝑓
𝛿𝑉𝑓𝛆𝑑𝜔𝜔  ,   𝛿𝐺𝛼 = 1

2 ∫ 𝛆𝑇 𝜕𝐀
𝜕𝛼

𝛿𝛼𝛆𝑑𝜔𝜔 .                   (20) 

The above derivations can be determined either analytically or numerically. 

3.  Example 

The aim of the optimization process considered here is maximization of the global structure stiffness. The 
total potential energy is assumed as the measure of the global structural stiffness. The plate shown in Fig. 
2a is analyzed. The plate is fixed on the left-hand edge and its thickness is 10 mm. The material constants 
of fibres and matrix are as follows: Ef  = 200 GPa, νf  = 0.3, Em  = 20 GPa, νm  = 0.16.  

1.5m

10kN/m

1m 5k
N

/m

a) b)  
Fig. 2: Static scheme of the plate.  
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The problem of optimal design is defined in the following way 

max
𝑉𝑓;𝛼

𝐺     subject to 𝑉𝑓 ≤ 𝑉𝑓0,                                             (21) 

where G is the potential energy of the structure, 𝑉𝑓 stands for the specific fibre volume, 𝑉𝑓0 is the 
maximum allowable specific fibre volume, which is 0.2 of the total plate volume, and finally 𝛼 is the 
fibre orientation angle. The angle 𝛼 is measured from the horizontal direction and is considered positive if 
fibre rotates counterclockwise. Initially, fibres are uniformly distributed and directed horizontally  
(Fig. 2b). The potential energy of the plate is -1.68 kJ. In order to solve the optimization problem, the 
plate is divided onto subdomains with constant design variables. Nine subdomains are chosen (Fig. 3a). 
Next, incremental procedure of gradient optimization is employed. In Fig.3b optimal fibres orientation 
and distribution are shown. Optimal values of design parameters are gathered in Tab. 1. The final 
potential energy increased to -1.07 kJ. 

a)

1 2 3

4 5 6

7 8 9

b)  
Fig. 3: Initial and final design of the plate.  

Tab. 1: Optimal values of design parameters. 

Subdomain 1 2 3 4 5 6 7 8 9 

Vf 0.29 0.21 0.10 0.25 0.22 0.12 0.26 0.21 0.14 
a 57 60 62 65 68 70 74 75 76 

4.  Conclusions  

The expressions for sensitivity analysis of composite structures with respect to fibre volume and fibre 
orientation are derived in the paper. The obtained formulae can be used in optimization procedures. The 
formulated approach can also be used for other type of modification like thickness optimization. It can be 
also extended for topology and shape optimization. 
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