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Abstract: This paper analyzes the problem of profit optimization known in literature for a random variable 
with an increasing function of increasing failure rate. The problem is generalized in case the random 
variable has a unimodal failure rate function. This result is illustrated by a numerical example. In the 
example, the unimodal failure rate function is formed from a mixture of exponential distribution and a 
distribution with a quadratic and increasing failure rate intensity.  
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1. Introduction 

Due to the complexity of the modeled transport processes and systems, there is a need for use of 
appropriate methods and tools ensuring effective realization of research and analysis of results obtained. 
Depending on the kind of analyzed research problems, appropriate methods of delineating optimal and 
quasi-optimal solutions were implemented and criterial functions, e.g.: the reliability and the average 
profit from the work of a technical object (Knopik et al., 2016), the unit cost of preventive replacement 
(Knopik et al., 2017), the availability and the profit per unit time (Knopik et al., 2018 and Migawa et al., 
2016). This paper examines a problem of profit optimization, which is associated with the contracting of 
transport services. In particular, a profit optimization model resulting from the relationship between the 
forwarder and the carrier is analyzed. The problem of optimization presented in the work is a 
generalization of the problem known from literature (Brusset, 2010 and Lariviere et al., 2001). In the 
paper (Brusset, 2010) it is assumed that the time of carrying out the transport task is a random variable 
with a increasing failure rate function (IFR). This paper shows that the theses of the paper (Brusset, 2010) 
are true for the wider class of probability distributions than the IFR. The review of classes and their 
properties is included in the paper (Lariviere, 2006). In the papers (Knopik, 2005 and Knopik, 2006 and 
Knopik, 2010), properties of a class of distributions useful for technical objects operation are examined. 
T stands for a non-negative random variable with f(x) density, F(x) distribution function, R(x) reliability 
function and λ(x) failure rate function. IFR is used to denote a class of non-negative random variables 
with a non-decreasing λ(x) failure rate function. The paper (Brusset, 2010) analyzes the problem of 
criteria function optimization in the following form: 
 𝑔(𝑥) = 𝛼𝐹(𝑥) + 𝑥𝑅(𝑥) (1) 

where 𝛼 ≥ 0 is a real number.  
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The first order of derivative of the function 𝑔(𝑥) has the following form: 
 𝑔′(𝑥) = 𝑓(𝑥)(𝛼 − 𝑥) + 𝑅(𝑥) (2) 

The second order of derivative may be written as:  
 𝑔′′(𝑥) = 𝑓′(𝑥)(𝛼 − 𝑥) − 2𝑓(𝑥) (3) 

For the derivative 𝑔′′(𝑥) to exist, it is sufficient that the derivative 𝑓′(𝑥) exists. The following 
conclusions include the basic properties of 𝑔(𝑥) function and its derivatives. 

Conclusion 1. 𝑔(0) = 0, 𝑔(∞) = 𝛼. 

Conclusion 2. 𝑔′(0) = 𝛼𝑓(𝑥) + 𝑅(𝑥), 𝑔′(𝛼) = 𝑅(𝛼) ≥ 0, 𝑔′(∞) = 0. 

Conclusion 3. 𝑔′′(𝛼) = −2𝑓(𝑥) ≤ 0. 

Conclusion 4. If 0 ≤ 𝑥 ≤ 𝛼, then the criteria function 𝑔(𝑥) increases.  

From conclusion 3 it follows that if there is a point 𝑥0 such that 𝑓′(𝑥0) = 0, then the criterion function 
𝑔(𝑥) reaches the local maximum at 𝑥0. From conclusion 4 it can be concluded that if there is 𝑥0 such that 
𝑓′(𝑥0) = 0, then 𝑥0 > 𝛼. 

The equation 𝑔′(𝑥) = 0 may be written as: 

 𝜆(𝑥) = 1
𝑥−𝛼

 (4) 

The right side of the equation is an increasing function, the left side is a decreasing function. This fact 
allows you to arrive at an important conclusion: 

Conclusion 5. If 𝑇 ∈ 𝐼𝐹𝑅, then criteria function 𝑔(𝑥) has exactly one maximum. 

Proof. Equation (4) has exactly one solution 𝑥0, thus on the basis of conclusions 𝑔′(𝑥0) = 0 i 𝑔′′(𝑥0) <
0. It follows that the criteria function 𝑔(𝑥) reaches exactly one maximum. 

2. Criteria function for unimodal failure rate function 

Examples of functions from the IFR class, for which the function 𝑔(𝑥) reaches the maximum are given in 
the paper (Brusset, 2010). Reliability theory analyzes a class of technical objects lifetime distribution 
much wider than the IFR class. Such lifetimes include lifetimes with a unimodal failure rate function. A 
set of lifetimes is built below such that their failure rate functions are unimodal and the criteria function 
𝑔(𝑥) reaches its exactly one maximum.  

To this end, the following symbols are introduced:  

𝑥0 – point, at which failure rate function 𝜆(𝑥) reaches maximum, 

𝑥1 – lowest root of equation (4), 

𝑔 – limit value for failure rate function 𝜆(𝑥), lim𝑥→∞ 𝜆(𝑥) = 𝑔, 

𝑥2 – value of variable x, for which function 𝑔1(𝑥) = 1
𝑥−𝛼

  equals 𝑔, which means that 𝑥2 = 𝛼 + 1
𝑔

. 

Since function 𝑔1(𝑥) > 0 for 𝑥 > 𝛼 it follows that 𝑥1 > 𝛼. 

We shall prove that, taking into consideration certain assumptions for 𝑥 ∈ (𝑥1, 𝑥2), the equation (4) has 
no roots. This is equivalent to the criterion function 𝑔(𝑥) reaching exactly one maximum. 

Conclusion 6. If 𝜆(𝑥) is unimodal and for 𝑥 ∈ (𝑥1,𝑥2) the following 𝜆′(𝑥)(𝑥 − 𝛼)2 + 1 > 0 is valid, 
then the criteria function 𝑔(𝑥) has exactly one maximum. 

Proof. Let 𝑣(𝑥) = 𝜆(𝑥) − 1
𝑥−𝛼

. It is known that 𝑣(𝑥1) = 0. The derivative 𝑣′(𝑥) may be written as: 

𝑣′(𝑥) =  𝜆′(𝑥)− 1
(𝑥−𝛼)2

. On the basis of the assumption 𝜆′(𝑥)(𝑥 − 𝛼)2 + 1 > 0 a conclusion is formed 
that 𝑣′(𝑥) > 0. Thus the function 𝑣(𝑥) increases for 𝑥 ∈ (𝑥1,𝑥2). For 𝑥 ≥ 𝑥2 it is clear that 𝑣(𝑥) > 0. 
Therefore, the equation (4) has no roots for 𝑥 ∈ (𝑥1, 𝑥2), the function 𝑔(𝑥) reaches exactly one 
maximum. 
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3. Numerical example  

Below is an example of the failure rate function for lifetime T, the distribution of which is a mixture of 
exponential distribution and a distribution with increasing quadratic failure rate function: 𝜆1(𝑥) =  𝑎𝑥2 +
 𝑏𝑡 + 𝑐. An extensive review of mixture results is included in paper (Lai et al., 2006). In particular, that 
paper presents  the results concerning the possible shapes of failure rate function for pairs of different 
probability distributions. Variables 𝑇1 and 𝑇2 have probability densities 𝑓1(𝑥) and 𝑓2(𝑥), distribution 
functions 𝐹1(𝑥) and 𝐹2(𝑥), reliability functions 𝑅1(𝑥) and 𝑅2(𝑥). The reliability function 𝑅(𝑥) for the 
mixture of variable distributions 𝑇1 and 𝑇2 is expressed in the formula: 
 𝑅(𝑥) = 𝑝𝑅1(𝑥) + (1 − 𝑝)𝑅2(𝑥) (5) 

where p is such mixture ratio 0 ≤ 𝑝 ≤ 1. 

The failure rate function of the mixture can be written as the following mixture: 
 𝜆(𝑡) = 𝑤(𝑡)𝜆1(𝑡) + (1 −𝑤(𝑡))𝜆2(𝑡) (6) 

where 𝑤(𝑡) = 𝑝𝑅1(𝑡)
𝑅(𝑡)

. 

Proposition 1: For the first derivative of 𝑤(𝑡), we have: 
 𝑤′(𝑡) = 𝑤(𝑡)�1 −𝑤(𝑡)��𝜆2(𝑡) − 𝜆1(𝑡)�  

Proposition 2: The first derivative of 𝜆(𝑡) is: 

 𝜆′(𝑡) = �1 −𝑤(𝑡)� ��−𝑤(𝑡)�𝜆2(𝑡) − 𝜆1(𝑡)�2 + 𝜆′2(𝑡)� + 𝑤(𝑡)𝜆′1(𝑡)�  

Proposition 3: If 𝜆1(𝑡) = 𝜆, then: 
 𝜆′(𝑡) = �1 −𝑤(𝑡)��−𝑤(𝑡)(𝜆2(𝑡) − 𝜆)2 + 𝜆′2(𝑡)�   

Let 𝜆1(𝑡) = 𝜆, 𝜆2(𝑡) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐, 𝑔1(𝑡) = 𝑤(𝑡)(𝑎𝑡2 + 𝑏𝑡 + 𝑐 − 𝜆)2, 𝑔2(𝑡) = 2𝑎𝑡 + 𝑏, where 
𝑎 >  0, 𝑏 ≥ 0, 𝑐 ≥ 0. 

The equation 𝜆′(𝑡) = 0 is equivalent to the equation: 

 𝑔1(𝑡) = 𝑔2(𝑡) (7) 

For the ratio 𝑢(𝑡) = 𝑔1(𝑡)
𝑔2(𝑡)

, we have: 

 lim𝑡→∞ 𝑢(𝑡) = ∞ (8) 

For the first derivative of 𝑢1(𝑡) = (𝜆2(𝑡)−𝜆)2

𝑔1(𝑡)
, calculate: 

 𝑢′1(𝑡) = 2(𝑎𝑡2+𝑏𝑡+𝑐−𝜆)
(2𝑎𝑡+𝑏)2

�3𝑎2𝑡2 + 3𝑎𝑏𝑡 + 𝑏2 − 𝑎(𝑐 − 𝜆)� (9) 

If 𝑐 = 𝜆, then 𝑢(𝑡) = 𝑢1(𝑡)𝑤(𝑡) increasing from 𝑢(0) = 0 to 𝑢(∞) = ∞ and the equation 𝑢(𝑡) = 1 has 
exactly one solution, then 𝜆(𝑡) is UBT. 

 
Fig. 1: Graphs of failure rate function for 𝑝 ∈ {0.2, 0.5, 0.8} as well as 𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝜆2 = 0.5. 
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Fig. 2: Graphs of criteria functions for 𝑝 ∈ {0.2, 0.5, 0.8} as well as 𝑎 = 1,𝑏 = 0, 𝑐 = 0,𝜆2 = 0.5. 

Figure 1 shows three unimodal failure rate functions  𝜆(𝑡) and figure 2 shows three related realizations of 
criteria functions 𝑔(𝑥), for 𝑝 ∈ {0.2, 0.5, 0.8} as well as 𝑎 =  1, 𝑏 =  0, 𝑐 =  0 and 𝜆2 = 0.5. For analyzed 
case, the criteria function 𝑔(𝑥) reaches exactly one maximum. The values of maximum criteria function 
depend on mixture parameter 𝑝. 

4. Conclusions 

This paper analyzes an economic optimization problem previously formulated in literature. The properties 
of the criterion function were examined, showing that the criteria function reaches an exactly one 
maximum for a much widely class of probability distributions than in the quoted literature. The paper 
concludes with an analysis of the generalizations of the optimization problem when the failure rate 
function is unimodal. In this paper, the probability distribution with the unimodal rate function was 
obtained from a mixture of an exponential distribution and a distribution with a quadratic and increasing 
failure rate function.  
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