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Abstract: Pulse propagation in elastic waveguides is simulated by means of finite volume methods. Results

of calculations by means of the standard wave-propagation algorithm are compared with those obtained by

the thermodynamically consistent excess quantities method. The main difference in these approaches is in the

implementation of boundary conditions. The similarity and the distinction of the results are demonstrated.

Keywords: Elastic waveguide, Pulse propagation, Finite-volume method, Boundary conditions

1. Introduction

A complex behavior of waves in elastic waveguides is due to the interaction of a wave with lateral bound-

aries. Propagation of a pulse demonstrates even more complicated motion. This motion can be described

in terms of hyperbolic conservation laws. A lot of numerical methods were applied to their solution: finite-

difference methods (Godlewski and Raviart, 1996; Trangenstein, 2009), finite-element methods (Cohen,

2002; Kampanis et al., 2008), discontinuous Galerkin methods (Hesthaven and Warburton, 2007; Cohen

and Pernet, 2017), finite-volume methods (LeVeque, 2002; Guinot, 2003), spectral methods (Hesthaven et

al., 2007; Gopalakrishnan et al., 2007) etc. The comprehensive survey of numerical methods for conserva-

tion laws is presented recently (Hesthaven, 2018).

Finite volume schemes are powerful numerical methods for solving nonlinear conservation laws and related

equations. Such methods are locally conservative and based on cell averages. The numerical solution of

systems of hyperbolic conservation laws is dominated by Riemann-solver-based schemes (LeVeque, 2002;

Guinot, 2003). The upgrade of the solution in a given cell is determined by the exchanges (via fluxes) at the

interfaces with the neighbouring cells. However, the cell average of a solution in a cell contains too little

information. In order to obtain higher-order accuracy, neighboring cell averages are used to reconstruct

an approximate polynomial solution in each cell. This reconstruction procedure is the key step for many

high-resolution schemes (Liu et al., 2007).

When extending the flux-difference schemes to multi-dimensional problems, the so-called grid aligned finite

volume approach or dimensional splitting method is adopted traditionally using one-dimensional Riemann

solvers. However, for multi-dimensional problem, there is in general no longer a finite number of directions

of information propagation. It has been pointed out (Roe, 1986) that the Riemann-solver is applied in the

grid- rather than the flow-direction, which may lead to a misinterpretation of the local wave structure of the

solution. To overcome the drawbacks of methods based on dimensional splitting, there have been consider-

able efforts to develop so-called genuinely multi-dimensional schemes for solving hyperbolic conservation

laws (Colella, 1990; Billet and Toro, 1997; LeVeque, 2002; Guinot, 2003).
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2. Governing equations

Elastic solids are characterized by the Hooke law which can be represented in the isotropic case in the form

of the stress-strain relation (Mase et al., 2009)

σij = λδijεkk + 2µεij , (1)

with the Cauchy stress tensor σij , the strain tensor εij , and the Lamé parameters λ and µ. In the linear

elasticity, a motion is governed by the local balance of linear momentum at each regular material point

(Achenbach, 1973)

ρ
∂vi
∂t

=
∂σij
∂xj

+ fi, (2)

where ρ is the matter density, vi is the particle velocity, t is time, fi is a body force, and xi are spatial

coordinates. In the plane strain case in the absence of body force, the governing equations for wave motion

(2) are reduced to

ρ
∂v1
∂t

=
∂σ11
∂x

+
∂σ12
∂y

, (3)

ρ
∂v2
∂t

=
∂σ21
∂x

+
∂σ22
∂y

. (4)

Stress-strain relations (1) are reformulated accordingly

σ11 = (λ+ 2µ)ε11 + λε22, (5)

σ12 = σ21 = 2µε12, (6)

σ22 = (λ+ 2µ)ε22 + λε11. (7)

Time derivatives of stress-strain relations (5) – (7) represented in terms of velocities together with the bal-

ance of linear momentum (3)–(4) form the closed system of equations, which is convenient for a numerical

solution.

3. Averaged and excess quantities

Let us introduce a Cartesian grid of cells Cnm = [xn, xn+1]× [ym, ym+1] with interfaces xn = n∆x, ym =
m∆y, and time levels tk = k∆t. For simplicity, the grid size ∆x,∆y and time step ∆t are assumed to be

constant. The values of wanted fields are somehow distributed across the cells.

The main idea in the construction of the algorithm is the consideration of every computational cell as a

thermodynamic system (Muschik and Berezovski, 2004). Since we cannot expect that such thermodynamic

system is in equilibrium, its local equilibrium state is described by averaged values of field quantities. The

use of cell averages is the standard procedure in the finite-volume methods. What is non-standard that is the

introduction into consideration so-called ”excess quantities” in the spirit of the thermodynamics of discrete

systems (Muschik and Berezovski, 2004). The excess quantities represent the difference between values of

true and averaged quantities (Berezovski et al., 2008; Berezovski, 2011):

vi = vi + Vi, σij = σij +Σij. (8)

Here overbars denote averaged quantities and capital letters relate to excess quantities.

3.1. Numerical scheme

Keeping in mind the representation of field quantities mentioned above, we integrate the governing equa-

tions over the computational cell. The result of the integration is expressed in terms of excess quantities

at the boundaries of the cell. The numerical scheme follows from the standard approximation of time

derivatives

ḟ ≈ fk+1 − fk

∆t
∀f, (9)
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and the definition of averaged values for velocities and stresses

vi =
1

∆x∆y

∫

∆x

∫

∆y
vidxdy, σij =

1

∆x∆y

∫

∆x

∫

∆y
σijdxdy. (10)

The corresponding numerical scheme is written down in terms of excess quantities (Berezovski et al., 2008).

These quantities, however, are not constants but vary along the corresponding boundary. Therefore, the

necessary step is to determine values of excess quantities.

4. Determination of excess quantities

Averaged values of excess quantities are determined exactly by means of jump relations at boundaries be-

tween computational cells, which express the continuity of true stresses and velocities (Berezovski et al.,

2008). It should be noted that each corner of the computational cell Cnm = [xn, xn+1] × [ym, ym+1]
can be considered as the central point of one of the corresponding four virtual cells Cn±1/2m±1/2 =
[xn±1/2, xn+1±1/2] × [ym±1/2, ym+1±1/2]. In the first approximation, the value of every field quantity

at corners of computational cells can be represented as the simple average of the corresponding values in

neighbouring cells

To be able to perform the calculation of a particular problem we need to specify initial and boundary

conditions. Initial conditions fix the state of each cell at a chosen time instant. Boundary conditions should

be expressed in terms of averaged and excess quantities used in the numerical scheme. We expect that

the state of cells adjacent to each boundary of the computational domain is known (at least partly). For

the proper computing, we need to know in advance as many values of averaged and excess quantities as

possible. All the boundary conditions follow from the jump relations at interfaces between cells and their

surroundings (Berezovski et al., 2008).

Fig. 1: Typical contour plot for pulse propagation after reflection at right boundary.

5. Test problem

As an example, a stress pulse propagation in a waveguide is considered. The length of the waveguide

is 250 mm, its thickness is 100 mm. Calculations are performed for Al 6061 alloy characterized by the

density 2700 kg/m3, the Young modulus 68.9 GPa, and the Poisson ratio 0.33. This corresponds to the

longitudinal wave velocity 5092 m/s. Choosing the space step equal to 1 mm, we have the time step 0.196

µs. The shape of the loading pulse at the left boundary is prescribed by σ11(t) = sin2(πt/80) for the first

80 time steps. After that the left boundary is stress-free. The right boundary is fixed and lateral boundaries

are stress-free. The problem is solved by means of wave-propagation algorithm (LeVeque, 1997) and by

means of the proposed numerical scheme. The main difference in these approaches is in the implementation

of boundary conditions. In the wave-propagation algorithm (LeVeque, 2002), the boundary conditions are

satisfied using the additional ”ghost cells”. In the proposed thermodynamically consistent scheme, the

boundary conditions are imposed in terms of excess quantities at boundaries. It should be noted that in
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the case of plane wave results of calculations obtained by both methods are identical. For non-plane wave,

the distribution of longitudinal stress shows a similarity of results obtained by the two numerical methods.

However, this similarity is not complete especially after reflection. The details of fields distribution depend

on the implementation of boundary conditions in the pulse propagation in elastic waveguides.

6. Conclusions

The propagation of a pulse in elastic waveguides displays the result of interactions of distinct modes. Theo-

retically, only certain first modes are taken into account. Direct numerical simulation combines all of them

by default. However, the implementation of boundary conditions should be as accurate as possible. In the

paper, such an implementation is proposed in terms of excess quantities taken directly at boundaries.
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