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Abstract:  To consider tissue anisotropy in computational models of arterial wall, information on directions 
of collagen fibres and their dispersion in the individual layers of the wall is needed. Many papers introduce 
the assumption of two fibre families although its experimental substantiation is poor. In this paper we 
analyse data on direction distribution of collagen fibres published in several papers, in contrast to their 
authors, without any anticipatory assumptions. Histograms and their different mathematical representations 
are compared by means of coefficient of determination R2 to obtain the best representation of the 
experimental data. The results show that in most of the analysed cases other distributions give better 
representation of the experimental data; specifically, the presented bimodal fit was surpassed with uni-, tri- 
or quadri-modal distributions or even with isotropic distribution with a large noise. This effect could be even 
enhanced when information criteria were applied. Finally, the best mathematical representations of the data 
(the best fits) are transformed into parameters used by anisotropic constitutive models in FEM analyses. 
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1. Introduction 

Arterial tissues are reinforced with collagen fibres causing their anisotropic mechanical properties. 
For their description many different constitutive models were developed (e.g. Lanir, 1983, Fung, 1993, 
Holzapfel et al., 2000, Holzapfel et al., 2005, Gasser et al., 2006). Among them structure based models 
can bring the best results if mechanical testing under different biaxial stresses is completed with 
histological information on directions of collagen fibres in the tissue including their dispersion (Polzer et 
al., 2015). Without structural information the advantages of these anisotropic models cannot be exploited, 
and its lack represents a severe limitation in stress-strain modelling of arterial and other soft tissues. 
Since the constitutive model with two perfectly aligned symmetric fibre families was published 
(Holzapfel et al., 2000), the existence two fibre families have been broadly accepted although it was not 
rigorously supported by experiments. The supervening substantiation of their existence in arterial tissue is 
not convincing; many authors intrinsically assume two collagen fibres in the tissue (Schrauwen, et al., 
2012, Schriefel et al., 2011, Schriefel et al., 2012) and nobody has compared different fits to experimental 
data, i. e. to histograms of direction distribution of collagen fibres. To fill this gap, this paper focuses on 
analysis of some histograms published in literature and comparison of their different mathematical 
approximations; this issue is decisive for rigorous application of anisotropic hyperelastic constitutive 
models based on the number of fibre families, their main directions and dispersion around these 
directions. Although there are models taking also fibre waviness into consideration (Martuffi et al., 2011), 
this issue remains out of scope of this paper due to a lack of applicable experimental data. 

2. Mathematical methods 

The most frequently used model used to fit the histograms with a dominant direction and some dispersion 
is π-periodic von Mises distribution given by the formula (adapted from Schriefel et al., 2012): 
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 𝜌(𝜙) = 𝑎 ∙
exp+𝑏 cos+2(𝜙 − 𝜇)33

2𝜋𝐼6(𝑏)
, (1) 

where angle 𝜙 defines the direction of an individual fibre, b is a concentration parameter describing the 
dispersion of fibre directions (b = ∞ for isotropic distribution and b = 0 for perfectly aligned fibres), 
𝑎 stands as normalizing parameter, angle 𝜇 defines the mean fibre orientation in the family, and I0 (b) is 
a modified Bessel function of the first kind of order 0. Eq. (1) represents a unimodal distribution, i.e. we 
assume just one fibre family. For more fibre families the most frequently applied model is given by 
combination of two (for n=2) or more (for n≥3) von Mises distributions: 

 𝜌(𝜙) = 𝑎 ∙8
exp+𝑏9 cos+2(𝜙 − 𝜇9)33

2𝜋𝐼6(𝑏9)

:

9;<

. (2) 

In contrast, other authors (Schrauwen et al., 2012) use the following equation for unimodal distribution: 

 𝜌(𝜙, 𝜙<, 𝜎) = 𝐴 exp
cos+2(𝜙 − 𝜙<)3 + 1

𝜎
, (3) 

where 𝜙 is the transmural angle, 𝜙<, 𝜎 are parameters of circular 3D distribution and parameter 𝐴 is 
a normalization factor. In most papers two fibre families in symmetric helical arrangement are assumed 
and thus a modified form of 3D distribution (3) is used, given by the following formula:  

 𝜌(𝛼, 𝛼<, 𝛼C, 𝜎<, 𝜎C) = 𝐴 Dexp
cos+2(𝛼 − 𝛼<)3 + 1

𝜎<
+ exp

cos+2(𝛼 − 𝛼C)3 + 1
𝜎C

E. (4) 

Angles 𝛼<, 𝛼C are mean angles of both fibre families and 𝜎<, 𝜎C correspond to their widths (dispersion). 
Also here 𝐴 represents a normalization factor. Unfortunately, there is no information on the way of fitting 
in (Schrauwen et al., 2012). Thus, it is not clear whether 𝐴 is the same for both parts of the bimodal 
distribution fitted simultaneously, or whether the 𝐴 values are different, and fitting was made separately 
for both fibre families. 

The last mathematical model used for comparison was the von Mises distribution modified in order to 
meet the normalization condition as follows (Gasser et al., 2006):  

 
1
4𝜋

G 𝜌+𝑀(𝜃, 𝜙)3d𝜔
L

= 1, (5) 

where 𝑀 is an arbitrary unit vector in the 3D Eulerian space, 𝜃 and 𝜙 are Eulerian angles, 𝜔 is a unit 
sphere and d𝜔 = sin 𝜃 d𝜃d𝜙. Finally, the probability density function according to (5) is given by: 

 𝜌(𝜃) = 4O
𝑏
2𝜋

exp(𝑏(cos(2𝜃) + 1))
erfi+√2𝑏3

, (6) 

where erfi(𝑥) = −i	erf	(𝑥) means the imaginary error function and 𝑏 has the same meaning of 
concentration parameter as in (1). Alternatively, directions in a fibre family can be specified using 
dispersion parameter 𝜅(see Fig. 1) which is given by the formula (Schriefel et al, 2011): 

 
𝜅 =

1
4
G 𝜌(𝜃) sinV 𝜃 d𝜃
W

6
, (7) 

where 𝜌(𝜃) is distribution from equation (6). Relation between both parameters can be seen in Fig. 1. 

The distributions listed above are mutually compared using data presented in literature to decide which 
can give better representation of the specific collagen fibres distributions obtained experimentally.  

3.  Results 
In this paper we compare the quality of fit of distributions published in two papers.  In none of them raw 
data was published, thus conversion of the histograms into numbers was done using open source 
software. Specifically, the image with histogram was loaded into the PlotDigitizer program and the 
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individual columns were manually clicked on their top to transform this position into numerical values of 
coordinates. Then the array with the obtained x and y coordinates was recorded for further processing. 

In (Schrauwen et al., 2012) the data was fitted with a bimodal distribution without having specified the 
quality of the fits. We replicated their fits and compared their quality with a unimodal distribution by 
means of coefficient of determination R2; in our fitting procedure, equation (1) was used. In some cases, 
the unimodal distribution has shown a comparable or even better quality of the fit. In one case (for 40 
mmHg) neither bimodal nor unimodal distributions resulted in an acceptable fit; the best one (although 
still not good) was obtained with isotropic (constant) distribution of fibre directions (see Table1). 

 
Figure 1: Relation between dispersion parameter 𝜅 and concentration parameter 𝑏. 

 

Table 1: Comparison of unimodal and bimodal fits to data from (Schrauwen et al., 2012) obtained under 
varying arterial pressure. Values	𝑏, 𝑎 and 𝜇 are parameters of unimodal von Mises distribution (eq. (1)). 

pressure [mmHg] R2 bimodal eq. (3) R2 unimodal eq. (1) 𝑏 𝑎 𝜇	[rad] 

0 0.46 0.84 1.064 1.908 -0.56 

40 -0.17 0.00 (constant) 0 1.99 - 

80 0.83 0.64 2.276 1.865 1.188 

120 0.83 0.80 3.267 1.983 1.384 

 

A similar comparison was done for the data from (Schriefel et al, 2011); the dispersion parameter 𝜅 
published there was recalculated into concentration parameter b for easier comparison (see eqs. (6), (7) 
and figure 1). Although the authors state there are 2 ÷4 fibre families in the intima of the investigated 
arteries, they still work with the bimodal distribution only. In contrast, we used multimodal distributions 
for intima, because histograms actually showed three (for CI) or four (for A or T) peaks. Specifically, eq. 
(2) was used in its extended form for trimodal or quadrimodal distributions. Thus, we were able to 
achieve a significantly better fit (with higher R2) of the histograms than in the original paper (see Table 
2). On the other hand, unimodal distribution made here for comparison using eq. (1) gave us a 
significantly worse fit in comparison with multimodal or bimodal ones.  

For media layers the analysis was also made using equations (1) and (2). For the common iliac artery 
unimodal distribution (with circumferential orientation of fibres) showed a better fit while a symmetric 
bimodal distribution was confirmed for both thoracic and abdominal aortas. Higher R2 values were 
achieved with our bimodal distribution because we have neglected the elevation angles of fibres (highly 
constrained by small thickness of the layer) and applied a 2D distribution only, in contrast to a 3D 
analysis used in (Schriefel et al., 2011). 
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Table 2: Comparison of our fits to data from (Schriefel et al, 2011). Subscripts old and new refer to 
original published data and our new fits, respectively. T, A, and CI mean thoracic aorta, abdominal aorta, 
and common iliac artery, respectively. 

location 𝑏[\] 𝑅[\]C  𝑅:_`C  𝑏:_` 𝜇	[rad] 

CI – intima 4.8885 0.18 0.44 2.212, 2.451, 2.448 -1.5, 0.618, -0.606 

A – intima 5.532 0.55 0.79 1.266, 2.291, 2.228, 1.694 0.049, -0.539, 0.580, 1.500 

T – intima 5.1425 0.60 0.72 2.230, 2.066, 1.142, 1.851 0.784, -0.772, -1.420, -0.100 

CI – intima 4.8885 0.18 0.03 0.0884 -0.6983 (unimodal) 

A – intima 5.532 0.55 0.45 0.3658 0.02724 (unimodal) 

T – intima 5.1425 0.60 0.19 0.1872 0.0374 (unimodal) 

CI – media 4.5225 0.63 0.95 2.302 -0.016 (unimodal) 

A – media 6.7147 0.82 0.96 3.930 ±0.408 (bimodal) 

T – media 5.7546 0.74 0.96 3.477 ±0.474 (bimodal) 

4. Conclusion 

Mathematical comparison of quality of the fit for different distribution functions has shown that some 
literature data on distribution of collagen fibres in arterial layers do not in fact correspond to bimodal 
distribution assumed by many authors and can be fitted much better with others, often unimodal 
distributions. This tendency might become even more pronounced if information criteria were used. 
For instance, Akaike information criterion (AIC) is going to be applied in our future work; as an estimator 
of the relative quality of statistical models it prevents the risk of overfitting or underfitting. Consequently, 
no anticipatory assumptions and much more sophisticated analyses of experimental data on fibre 
directions should be used to transform them into structural parameters of constitutive models capable to 
achieve a credible description of mechanical properties of arterial layers.  
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