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Abstract: A complex creep constitutive model including transient effects was implemented in the finite element
code PMD (Package for Machine Design). The material model for P-91-type creep-resistant steel together with
computer implementation was verified by means of uniaxial stress loadings. Testing bar was discretized by the
finite element method (FEM) and loaded with uniaxial stresses and constant temperatures that were used to
demonstrate the analytical solutions in original paper.
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1. Introduction

It is well known that creep experiments are time consuming and expensive. Moreover, the conventional
creep tests are obviously available only for steady-state conditions while transient effects connected with
varying conditions during startup or shutdown of the components are rarely explored experimentally. In-
stead, the transient phenomena seems to be an ideal field for computer modelling. The mathematical mod-
elling of creep is usually based on the constitutive creep equations, which describe the strain rate depen-
dence on stress, temperature and time, or creep strain, see Penny and Marriott (1971).

Numerical methods such as the finite element method (FEM) are apt tools for incorporating creep constitu-
tive laws to describe the behaviour of real components under steady-state or transient conditions. The finite
element method can be easily used to model components with more complicated geometry and serve for
simulations of deformation and degradation processes for assessing life-limiting processes in such compo-
nent parts. A relevant mathematical description of the material’s properties under a wide range of stresses
and temperatures is needed to obtain valid results. However, the current descriptions of the creep processes
are based exclusively on the creep curves measured under constant loading conditions, so the transient
effects caused by stress changes are ignored, see Kloc (2015).

Recently, complex model describing creep behaviour under variable stress conditions during primary and
secondary creep stages was developed by Kloc et al. (2018). The model can handle transient effects on the
stress changes, as well as low-stress creep behaviour. The constitutive equation was built using the relevant
creep data for P-91-type steel, but it can be applied to the creep behaviour of most structural materials,
e.g. the transient creep properties of the Sanicro 25 austenitic creep resistant steel were newly investigated
in Kloc et al. (2019). In this work, the proposed creep material model including transient effects was
implemented in the finite element code PMD–Package for Machine Design (2013). The material model
together with computer implementation was verified by means of uniaxial stress loadings. Testing bar was
discretized by the finite element method (FEM) and loaded with uniaxial stresses and constant temperatures
that were used to demonstrate the analytical solutions in original paper Kloc et al. (2018).
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2. Complex creep phenomenological model including transient effects

The complex material model developed by Kloc et al. (2018) is based on two distinct deformation mecha-
nisms acting in parallel. The first mechanism, dominating at low stresses, is anelastic and it is based on a
building of the field of internal stresses, assuming interaction of the hard elastic zones and soft elastoplastic
zones. The other mechanism, dominating at higher stresses, is more obvious plastic deformation described
by the modified Garofallo equation with threshold stress.

Since both mechanisms are assumed to be independent and running in parallel, the strain rate ε̇ can be
expressed as the the sum of the high-stress mechanism rate ε̇h and the low-stress mechanism rate ε̇l

ε̇ = ε̇h + ε̇l (1)

In high-stress region, the primary creep stage is assumed to be described by the Li equation proposed by Li
(1963) in differential form. The strain rate ε̇h can be expressed as

ε̇h =
ε̇s (1 + ri)

1 + ri − ri exp (−θ)
(2)

where ε̇s is the secondary-stage creep rate, ri is a parameter characterising the ratio of the initial creep rate
ε̇i to the secondary creep rate, ri = ε̇i/ε̇s − 1 and dimensionless variable θ describes the “creep age” of the
material integrated according to

θ =
1

c

∫ t

0
|ε̇s| dt (3)

where t is time and c is constant which describes the relation between the secondary stage creep rate and the
primary relaxation time of the high-stress mechanism. The secondary-stage creep rate ε̇s, in the equation
(2) is described by the hyperbolic sine function (Garofalo-type equation)

ε̇s = sgn(σ) b exp

(−Qh

RT

)
sinh

(
p

(
|σ|+

√
(|σ| − σt)2 + σ2r −

√
σ2t + σ2r

))
(4)

where σ is the applied stress, σt is threshold stress, σr describes the residual effective stress below the
threshold, Qh is the apparent activation energy for the high-stress deformation mechanism, R is the uni-
versal gas constant, T is the absolute temperature, and b and p are parameters, where b controls the overall
rate of the high-stress mechanism and p controls the transition between linear and exponential parts of the
Garofallo equation.

For the low-stress region, the internal stress model from Kloc (2010) can be applied using a power-law
relation with n = 3. The strain rate of the low-stress mechanism ε̇l can be described as

ε̇l =
σ̇

E
+ ε̇c (5)

where E is Young’s modulus and the strain rate ε̇c is given by

ε̇c = g exp

(−Ql

RT

)(
σ

σt
− (1− k)E

kσt
εc

)3

(6)

whereQl is the apparent activation energy for the low-stress mechanism, and g and k are parameters, where
g controls the overall rate of the low-stress mechanism and k describes the ratio between hard and soft zones
elasticities. Note that the value of εc is obtained by numerical integration of equation (6). All parameters
used to model the creep behaviour of the P-91-type steel are available in Kloc et al. (2018).

For the generalization of model into 3D some assumption must be adopted, see Kloc (2015): (i) the material
is isotropic and remains isotropic, (ii) the creep strain is isochoric and (iii) the low-stress mechanism and
the high-stress mechanism are independent even in 3D. From the third assumption above, the strain rate
tensor ε̇ can be expressed as

ε̇ = ε̇h + ε̇l (7)

122



where ε̇h and ε̇l are strain rate tensors for high-stress and low-stress creep mechanisms, respectively. The
high-stress part represented by equations (2)-(4), has a form of obvious creep equations, whose 3D gener-
alisation procedure is based on the Prandtl–Reuss equations

ε̇h =
3

2

ε̇hc
σe

S (8)

where S is deviatoric part of the σ tensor. The equivalent stress σe is given by von Mises’ function

σe =

√
3

2
S · S (9)

The σe is then used in equations (3),(4) and (2) to calculate equivalent creep rate ε̇hc for the high-stress
mechanism, which is applied in (7).

For the low-stress mechanism, 3D generalisation of the model yields

σ = Ĉ
(
εl − εc

)
(10)

where εc is the strain tensor of creeping element and Ĉ is fourth-order tensor of elasticity, which can be
for isotropic material expressed in terms of E and Poisson’s ratio ν. Similar procedure as applied for the
high-stress mechanism can be used for the creeping element leading to equation for the strain rate of the
low-stress creep mechanism

ε̇l = Ĉ−1σ̇+ ε̇c (11)

where the creep rate tensor ε̇c can be obtained by similar way as ε̇h in high-stress mechanisms, see details
in Kloc et al. (2018).

Note that constitutive equations (7)-(11) are integrated by an original explicit algorithm for integration of
differential systems arising from viscoplastic or creep finite element analyses, see Plešek and Korouš (2002).
The algorithm combines Euler’s forward scheme applied to discretised equilibrium equations at constant
stress with a more precise procedure for the solution of local constitutive equations on the Gauss point
level. Automatic subincrementation strategy ensures that the global error comprising both the truncation
and roundoff errors remains bounded. The time step length is set on the basis of a posteriori error estimate.
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Fig. 1: Creep transient effect for P-91 steel upon stress change σ = 34.1 → 39.4 → 34.1 MPa and
temperature T = 600 ◦C: creep strain distribution (left) and creep rate distribution for zoomed time interval
when stress change occurred (right)

3. Results

The capability of the model to describe the transient creep behaviour for P-91 steel upon stress changes
is demonstrated in Fig. 1. This well-know effect observed at low stress region is characterized by a large
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change in the creep rate as a result of changes in stress. The creep rate then returns slowly to an equilib-
rium value. Negative creep rate can be obtained after reducing the macroscopic stress even if the stress
level remains positive. It should be noted that internal stress generated during the primary creep stage is
considered to be responsible for this effect, see Kloc et al. (2018). Note that the transient effect behaviour
is ignored completely with current creep constitutive equations because they are derived to describe only
constant stress creep experiments.

Fig. 1 shows transient creep phenomena upon stress changes σ = 34.1 → 39.4 → 34.1 MPa and tem-
perature T = 600 ◦C. The time distributions of creep strain (left) and creep rate (right) are compared for
analytical (model) and FE solution. Note that distributions of creep rate are plotted for zoomed time interval
when stress change occurred. The experimental data are available in original paper Kloc et al. (2018). It
should be concluded that quite a good agreement between the analytical (model) and finite element solutions
was observed.
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