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Abstract: Knowledge of soil hydraulic properties is essential for modelling hydrodynamic phenomenons in
soils under variably saturated conditions. This contribution focuses specifically on the properties of the top
layer of soil which fundamentally influences the rainfall-runoff process, but the laboratory experimental proce-
dures for the top-soil are very limited due to e.g. vegetation disturbing the experimental samples. The Richards
equation describing the soil water flow process is here parameterised by the Mualem-van Genuchten model.
The identification of the soil hydraulic parameters of this model is based on an in situ measurement of the
single ring infiltration experiment. The experimental data and a priori information about parameters’ values
are combined according to Bayes’ rule in order to obtain an updated probabilistic description of unknown
parameters. The Bayesian inference is realized by the Markov chain Monte Carlo method based on a less
time-consuming polynomial approximation of the Mualem-van Genuchten model.
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1. Introduction

The unsaturated soil hydraulic properties of the top layer of soil can be identified from the well-known single
ring infiltration experiment, see Kuráž et al. (2018). The authors have presented the obstacles connected
to deterministic identification based on a robust genetic algorithm caused by wide ranges of the identified
parameters of the Mualem-van Genuchten model (Genuchten, 1980). The convergence issues of simulating
the model itself have been solved, but nonlinearity of the numerical model leading to multimodality of the
optimized objective function complicates the optimization significantly.

This contribution focuses on extension of the identification problem into the stochastic space by considering
the model parameters and the observed quantity as random variables. The probabilistic approach to solving
the inverse problem allows to consider uncertainties expressing the experimental errors and to evaluate
the corresponding uncertainty about the estimated parameters’ values (Tarantola, 2005). The core of the
proposed probabilistic identification procedure is the Bayesian inference combining a priori information
about the parameters’ values and experimental data (Bayes and Price, 1763).

The single ring infiltration experiment and the corresponding experimental data are presented in Jačka et
al. (2016). The numerical model of the experiment is described in a detail in Kuráž et al. (2018) and the
core differential equation governing the water flow in a variably saturated porous medium is numerically
solved in the DRUtES library (Kuráž et al., 2008, 2015). In this contribution, one of the available experi-
mental measurement is used to demonstrate the process of probabilistic identification of the soil hydraulic
parameters.
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2. Parameter identification

The purpose of this task is to identify selected parameters of soil hydraulic properties, namely van Genuchten
retention curve parameters α and n, and saturated hydraulic conductivity Ks, see Tab. 1. The model has
two another parameters, which are fixed on a basis of the previous results presented in Kuráž et al. (2018).
The parameter of saturated water content θs is difficult to be interpreted and in order to make the conditions
of the inverse problem better, this parameter is fixed to the value 0.8 according to the expert knowledge. As
it is usually done in small-scale cases (Fér and Kodešová, 2012), specific storage Ss is set to be equal to
zero here.

The expert knowledge of the parameters’ values is available in a form of ranges given in Tab. 1. In the
identification procedure, standardised parameters x are employed instead of the real model parameters.
Each model parameter is substituted by one standardised parameter according to mutual relation defined
in Tab. 1. The prior probability distribution of x is assumed to be uninformative uniform on the interval
〈−1; 1〉.

Tab. 1: List of model parameters with ranges of their possible values and relations to the normalized
parameters to be identified.

Parameter Symbol Unit Minimum Maximum Relation to xi

Inverse of air entry value α [L−1] 10−4 100 x1 = (log10(α) + 4)/2− 1

Pore size distribution parameter n [-] 1.05 4.00 x2 = 2(n− 1.05)/2.95− 1

Saturated hydraulic conductivity Ks [L·T−1] 10−3 101 x3 = (log10(Ks) + 3)/2− 1

The unknown parameters are inferred in the Bayesian way with a help of the Markov chain Monte Carlo
(MCMC) method (Gilks et al., 2005; Spall, 2003). The numerical model of the single ring infiltration
experiment is simulated with a help of the DRUtES library Kuráž et al. (2008). The model response is a
curve of cumulative infiltration I(x) discretised into 893 time steps t. In order to accelerate the sampling
procedure of MCMC, each component of the full numerical model response is surrogated by its polynomial
approximation.

Specifically, the metamodels are constructed from a basis of the Legendre polynomials, which are orthogo-
nal with respect to the probability density function of uniform distribution on 〈−1; 1〉 (Xiu and Karniadakis,
2002). The appropriate coefficients of the polynomials are computed by regression method based on a set of
model simulations for chosen input values of the model parameters (Blatman and Sudret (2010a)). At first,
the design of experiments of 10.000 samples is created by latin hypercube sampling on the defined domain
with respect to the prior distribution. However, many of the prior model simulations are unrealistic and out
of range of the experimental data, so we utilize for the metamodel construction just a part of the obtained
model simulations, as it is shown in Fig. 1. The corresponding input values of the model parameters are
depicted in Fig. 2. There are obvious regions in the prior domain with no selected sample, so these regions

Fig. 1: Model simulations for prior parameters’ distribution (left) and selection of model simulations for
construction of polynomial approximation (right].
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are not interesting in terms of the parameter identification for the specific experimental data. The restriction
is particularly evident for the combinations of x1 and x3. The domain of the polynomial approximations is
not restricted, but one has to be careful about the approximation error which is reasonable only in the region
of the selected simulations. The degree of the polynomials is set to be 18 for all the time steps according to
the cross-validation error based on 100 repetitions of leave-random-ten-out approach.
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Fig. 2: Parameters’ values corresponding to the selected model simulations for construction of polynomial
approximation.

The likelihood function is based on the experimental errors, which are assumed as i.i.d. normal random
variables with standard deviation stated by the experimenter, and theoretical errors caused by approximating
the model, which are normal random variables with variances estimated from the approximation errors.

The MCMC samples of the Bayesian posterior are obtained by the Metropolis algorithm (Metropolis et al.,
1953). The proposal distribution of the random step is normal with standard deviation set as to reach the
acceptance rate around 40 %. The starting point of the random walk is equal to the input values into the
model simulation with the minimal difference from the experimental curve. This setting provides a fast
convergence of algorithm so as to efficiently obtain samples of the prescribed distribution. The maximum
a posteriori probability (MAP) estimate of parameters’ values (the mode of the posterior) and standard
deviation estimated from the MCMC samples are in Tab. 2.

Tab. 2: List of model parameters with ranges of their possible values and relations to the normalized
parameters to be identified.

Parameter MAP STD [·10−4] Model Parameter MAP

x1 0.1773 22 α [L−1] 2.26 · 10−2

x2 0.7983 47 n [-] 3.70

x3 0.8623 25 Ks [L·T−1] 5.30

The results show that parameters α and Ks are estimated with uncertainty twice as small as parameter n
according to the a posteriori variances of corresponding standardised parameters. Fig. 3 shows a good
match of experimental curve and model response corresponding to MAP estimate of the model parameters,
so the calibration process is successful.

3. Conclusions

The presented probabilistic identification procedure enables to estimate values of the soil hydraulic param-
eters of the Mualem-van Genuchten model together with the uncertainties associated with this estimate.
The properties of the top layer of soil are identified on a basis of combining the data from the single ring
infiltration experiment with expert knowledge about the parameters’ values according to Bayes’ rule. The
a priori ranges of parameters’ values are assumed wide but the analysis of the corresponding model simu-
lations shows that there is the specific subdomain where the model captures well the physical phenomenon
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Fig. 3: Comparison of selected a priori model simulations, experimental curve and model response corre-
sponding to identified parameters’ values .

observed during the experiment. The restriction of the domain allows to construct the sufficiently accu-
rate metamodel to be employed in the MCMC sampling in order to accelerate the identification process.
The further research should be focused on updating the a priori distribution itself according to the subdo-
main of interest which guarantees the elimination of accidentally obtained misleading estimates caused by
extrapolating of the model approximation.
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