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Abstract: In this contribution, a stabilization technique for finite element modelling of contact-impact prob-
lems based on the bipenalty method and the explicit predictor-corrector time integration is presented. The
penalty method is a standard method for enforced contact constrains in dynamic problems. This method is
easily implemented but the solution depends on numerical value of the stiffness penalty parameter and also the
stability limit for explicit time integration is effected by a choice of this parameter. The bipenalty method is
based on penalized not only stiffness term but also mass term concurrently. By this technique with a special
ratio of mass and stiffness penalty parameters, the stability limit of contact-free problem is preserved. In this
contribution, we also present a modification of the explicit time scheme based on predictor-corrector form.
By meaning of this approach, spurious contact oscillations are eliminated and the results do not depend on
numerical parameters.

Keywords: Finite element method, Contact-impact problems, Explicit time integration, Penalty and
bipenalty methods.

1. Introduction

A numerical stabilization technique based on the finite element method for modelling of contact-impact
problems is presented. Presently, penalty methods, Lagrange Multiplier methods or augmented Lagrangian
methods are standard methods for modelling of dynamic contact problems in the finite element method, see
Belytschko (2008). In this paper, the finite element method, see Hughes (2000)s with the penalty method
for contact enforcing is employed. In explicit finite element analysis, the penalty method is preferred due
to its simplicity, see Belytschko (2008). In the principle, the stiffness term is added into the strain energy
in the variational formulation of a contact-impact problem. The classic penalty method has a disadvantage
that the stable time step is attacked by the stiffness penalty parameter. Further, it is needed to set a suitable
value of the stiffness penalty parameter and results depend on this value.

A modification called the bipenalty method is able to kept the stable time step size corresponding to contact-
free problems independent of value of stiffness penalty parameter. In this approach, the inertia (mass) term
is also penalized and the dynamical system corresponding to contact pairs can be controlled by the mass and
stiffness penalty parameters simultaneously. With a special setting of ratio of mass and stiffness penalty
parameters, the maximum eigen-frequency dictating the stability limit is preserving in comparison with
contact-free problems. And the stiffness penalty parameter can be chosen arbitrarily. The application of the
bipenalty method into dynamic conctact problems have been applied in Kopačka (2018).
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kopacka@it.cas.cz

*** Dr. Anton Tkachuk: Institute for Structural Mechanics, University of Stuttgart; Pfaffenwaldring 7; 70550 Stuttgart; Germany,
tkachuk@ibb.uni-stuttgart.de
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Another trouble in modelling of dynamic contact problems is existence of spurious contact oscillations.
In this paper, we suggest a methodology witch is able to avoid the both mentioned troubles in modelling
of dynamic contact problems and we applied them into one-dimensional problems. We take together the
bipenalty method, see Askes (2010); Hetherington (2013), and the predictor-corrector form, see Wu (2003),
for explicit time integration of stabilized equation of motion with contact boundary conditions.

2. Bipenalty method in finite element method for contact-impact problems

In the work Kopačka (2018), the equations of motion of impacted elastic solids with respect to the bipenalty
stabilization has been derived. Also the stability of the bipenalty method has been analyzed there. We
shortly remark the basics of application of the finite element method for modelling of contact-impact prob-
lems in an one-dimensional case with bipenalty terms (additional penalized stiffness and mass terms, see
Kopačka (2018)). Equations of motion for contact-impact problems under infinitesimal theory modelled by
the finite element method are given by the following system of equations

Mü(t) + Ku(t) + Rc(u, ü) + R(t) = 0 (1)

where u, u̇, ü mark the global vectors of nodal displacements, velocities and accelerations, respectively. M
is the global mass matrix, K is the global stiffness matrix, R(t) is the time-dependent global load vector, t
is the time. Finally, Rc is the global contact residual vector given in the local elemental form as

R̂c(û, ¨̂u) = M̂p
¨̂u + K̂pû + f̂p (2)

where

M̂p =

∫

Γc

εmH(g)NNT dS K̂p =

∫

Γc

εsH(g)NNT dS f̂p =

∫

Γc

εsH(g)Ng0 dS (3)

Here, M̂p is the additional elemental mass matrix due to inertia penalty, K̂p is the additional elemental stiff-
ness matrix due to stiffness penalty, û is the vector of displacements of contact pairs and f̂p is the part of the
elemental contact force due to the initial gap g0; g is the gap function; H(g) is the Heaviside step function
for prescribing active or inactive contact constraints; εm and εs are mass and stiffness penalty parameters;
Γc is the contact surface between bodies; the matrix N represents an operator from the displacement field
u to the gap function gN in the contact

gN = NTu + g0. (4)

The particular form of the matrix N follows from the used contact discretization. Note, that the matrices
Mp and Kp are time-dependent because they are associated with active contact constrains.

3. Discretized equations of motion with the bipenalty stabilization

Now, we assume the time integration of the semi-discretized system (1) in the framework of the central
difference method Belytschko (2008) as

(Mt + Mt
p)
ut+∆t − 2ut + ut−∆t

∆t2
+ (Kt + Kt

p)ut + f tp −Rt = 0 (5)

Assuming that displacements are known at time t − ∆t and t, one can resolve unknown displacements at
time t + ∆t, where ∆t marks the time step size. We assume the diagonal mass matrix and linear shape
functions.

4. Stability analysis

In the case of explicit time integration by the central difference method, the stability limit is given as
∆t ≤ 2/ωmax, see Park (1977), where ωmax is computed as the maximum eigen-value of [−ω2(M +
Mp)+(K+Mp)]U = 0. The stability analysis for bipenalized dynamical systems for different geometrical
cases of contact problems in one-dimensional case has been studied in Kopačka (2018). For examples, the

186



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2 4 6 8 10

0
1/
√

16
1/
√

8

1/
√

4

1/
√

2

1

C
r

lim
βs→∞

Cr(βs)

βs

r = 1 (bipenalty)
r = 2
r = 4
r = 8
r = 16
r =∞ (penalty)

Fig. 1: Bipenalized Signorini problem: Dependence of the critical Courant numberCr on the dimensionless
stiffness penalty βs for selected ratios r = 1

2
βs

βm
, see Kopačka (2018).

stability graph for dimensionless stiffness and mass penalty parameters (βs and βm) is shown in Fig. 1 for
the Signorini problem. One can see the stability limit for the penalty method (r = ∞) – the stability limit
rapidly decreases with a larger value of stiffness penalty parameter. Based on this stability study, there
exists a special setting of ratio of dimensionless stiffness and mass penalty parameters (r = 1) so that the
stability limit for contact-free problems is preserved.

5. Time integration of equation of motion with contact constrains

The stabilized explicit time integration scheme for contact-impact problems is mentioned in depth. In the
work Wu (2003), the fully explicit time integration scheme with stabilized technique for contact-impact
problems has been published and tested. The mentioned time integration scheme takes the following
flowchart with splitting bulk and contact accelerations for application with the bipenalty method:

• Given ut, u̇t−∆t/2, f text
• Compute accelerations of predictor phase ütpred = M−1(f text −Kut)

• Mid-point velocities of predictor phase u̇
t+∆t/2
pred = u̇t−∆t/2 + ∆tütpred

• Displacements of predictor phase ut+∆t
pred = ut + ∆tu̇

t+∆t/2
pred

• For given ut+∆t
pred analyze contact, compute gap vector g and contact forces fcont = −Kpu

t+∆t
pred + f0

p

• Compute accelerations of corrector phase ütcorr = (M + Mp)−1(fcont)
• Compute total accelerations üt = ütpred + ütcorr

• Mid-point velocities of corrector phase u̇t+∆t/2 = u̇
t+∆t/2
pred + ∆tütcorr

• New displacements of corrector phase ut+∆t = ut + ∆tu̇t+∆t/2

• For given ut+∆t analyze contact, compute gap vector g and contact forces f t+∆t
cont = −Kpu

t+∆t + f0
p

• t→ t+ ∆t

In this two-time step scheme, bulk accelerations in the predictor phase ütpred are computed only for in-
ternal and external forces without information about contact constrains. After updating of velocities and
displacements, contact constraints are analyzed and contact forces fcont are evaluated. For these contact
forces, contact accelerations in the corrector phase ütcorr are computed with the additional penalized mass
matrix Mp. After that, the both parts of accelerations are taken together.

The suggested methodology is possible to extent for multi-dimensional problems in the same sense with
correct evaluation of penalized matrices, and also into fully geometrical and material non-linear problems
where one has to use correct evaluation of internal forces for nonlinear problems (e.g. in connection with
consistent co-rotational formulation) and with updating of actual spatial coordinates, see Belytschko (2008).
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6. Numerical benchmark - impact of bars

As a numerical test, we study a contact-impact problem of two elastic bars with different lengths defined
in work of Huněk (1993) and for scheme see Fig. 2 left. The left bar is moving to the right with a constant
velocity and the right bar with fixed right-hand side is at rest. In Fig. 2 right, one can see the time history of
contact force between two elastic bars computed by the stabilized explicit scheme and the bipenalty method.
The results exhibit promising physically correct results.

E1, A1, ρ1

v01

g0L1

x

v02 = 0
E2, A2, ρ2

L2

Fig. 2: A scheme of an one-dimensional impact of two bars with different lengths (on the left). Time history
of contact force for impact of two bars with different lengths - the stabilized explicit method with the Courant
number C = 0.5 for dimensionless numerical stiffness penalty parameter βs = 0.25 and optimal bipenalty
stabilization setting (on the right).

7. Conclusions

In this contribution, we have suggested the methodology for finite element modelling of contact-impact
problems. The method has been tested for an one-dimensional problems. The method produces superior
properties. In the future, we plan testing numerical stability and sensitivity on numerical parameters in
depth and to extent the method for multi-dimensional problems. In this case, the implementation is the
same as in one-dimenstional cases.
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